Abstract

An optical bleaching effect in a BiI3 microcluster colloidal system in the visible region was observed. We find that this effect can be adequately explained by a two-level model with inhomogeneous broadening. By measuring the intensity dependence of the saturated absorption coefficient, we evaluated the third- and fifth-order effective nonlinear-optical susceptibilities of the BiI3 microcluster colloidal system to be approximately 10−10 and 10−15 esu, respectively. By applying the effective-medium approximation, we find that the third-order nonlinear-optical susceptibility of BiI3 microclusters is approximately 5 × 10−6 esu.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Sandroff, D. M. Hwang, W. M. Chung, “Carrier confinement and special crystallite dimensions in layered semiconductor colloids,” Phys. Rev. B 33, 5953 (1986).
    [CrossRef]
  2. C. J. Sandroff, S. P. Kelty, D. M. Hwang, “Clusters in solution: growth and optical properties of layered semiconductors with hexagonal and honeycombed structures,” J. Chem. Phys. 85, 5337 (1986).
    [CrossRef]
  3. C. J. Sandroff, W. M. Chung, “Magic numbers observed in the dissolution of layered semiconductor colloids,” J. Colloid Interface Sci. 115, 593 (1987).
    [CrossRef]
  4. S. Schmitt-Rink, D. A. B. Miller, D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113 (1987).
    [CrossRef]
  5. D. Sarid, B. K. Rhee, B. P. McGinnis, C. J. Sandroff, “Degenerate four-wave mixing from layered semiconductor clusters in the quantum size regime,” Appl. Phys. Lett. 49, 1196 (1986).
    [CrossRef]
  6. A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, L. E. Brus, “Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys. 89, 4001 (1988).
    [CrossRef]
  7. Y. Wang, N. Herron, W. Mahler, A. Suna, “Linear- and nonlinear-optical properties of semiconductor clusters,” J. Opt. Soc. Am. B 6, 808 (1989).
    [CrossRef]
  8. Y. Q. Li, C. C. Sung, R. Inguva, C. M. Bowden, “Nonlinear-optical properties of semiconductor composite materials,” J. Opt. Soc. Am. B 6, 814 (1989).
    [CrossRef]
  9. P. D. Persans, A. Tu, Y.-J. Wu, M. Lewis, “Size-distribution-dependent optical properties of semiconductor microparticle composites,” J. Opt. Soc. Am. B 6, 818 (1989).
    [CrossRef]
  10. G. S. Agarwal, S. Dutta Gupta, “T-matrix approach to the nonlinear susceptibilities of heterogeneous media,” Phys. Rev. A 38, 5678 (1988).
    [CrossRef] [PubMed]
  11. F. Hache, D. Ricard, C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647 (1986).
    [CrossRef]
  12. J. W. Haus, N. Kalyaniwalla, R. Inguva, M. Bloemer, C. M. Bowden, “Nonlinear optical properties of conductive spheroidal particle composites,” J. Opt. Soc. Am. B 6, 797 (1989).
    [CrossRef]
  13. D. Stroud, V. E. Wood, “Decoupling approximation for the nonlinear-optical resonance of composite media,” J. Opt. Soc. Am. B 6, 778 (1989).
    [CrossRef]
  14. B. L. Evans, “Optical properties of bismuth tri-iodide,” Proc. R. Soc. London Ser. A 289, 275 (1966).
    [CrossRef]
  15. H. J. Kim, B. K. Rhee, “Study of optical properties of BiI3clusters,” New Phys. 29, 519 (1989).
  16. R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969), Chap. 3.
  17. A. E. Siegman, Laser (Oxford U. Press, New York, 1986), Chaps. 3, 30.
  18. R. K. Jain, M. B. Klein, “Degenerate four-wave mixing in semiconductors,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), pp. 345.
  19. R. K. Jain, R. C. Lind, “Degenerate four-wave mixing in semiconductor-doped glasses,” J. Opt. Soc. Am. 73, 647 (1983).
    [CrossRef]
  20. T. Yajima, H. Sauma, “Study of ultra-fast relaxation processes by resonant Rayleigh-type optical mixing. I. Theory,” Phys. Rev. A 17, 309 (1978); J. J. Song, J. H. Lee, M. D. Levenson, “Picosecond relaxation measurements by polarization spectroscopy in condensed phases,” Phys. Rev. A 17, 1439 (1978).
    [CrossRef]

1989 (6)

1988 (2)

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, L. E. Brus, “Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys. 89, 4001 (1988).
[CrossRef]

G. S. Agarwal, S. Dutta Gupta, “T-matrix approach to the nonlinear susceptibilities of heterogeneous media,” Phys. Rev. A 38, 5678 (1988).
[CrossRef] [PubMed]

1987 (2)

C. J. Sandroff, W. M. Chung, “Magic numbers observed in the dissolution of layered semiconductor colloids,” J. Colloid Interface Sci. 115, 593 (1987).
[CrossRef]

S. Schmitt-Rink, D. A. B. Miller, D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113 (1987).
[CrossRef]

1986 (4)

D. Sarid, B. K. Rhee, B. P. McGinnis, C. J. Sandroff, “Degenerate four-wave mixing from layered semiconductor clusters in the quantum size regime,” Appl. Phys. Lett. 49, 1196 (1986).
[CrossRef]

C. J. Sandroff, D. M. Hwang, W. M. Chung, “Carrier confinement and special crystallite dimensions in layered semiconductor colloids,” Phys. Rev. B 33, 5953 (1986).
[CrossRef]

C. J. Sandroff, S. P. Kelty, D. M. Hwang, “Clusters in solution: growth and optical properties of layered semiconductors with hexagonal and honeycombed structures,” J. Chem. Phys. 85, 5337 (1986).
[CrossRef]

F. Hache, D. Ricard, C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647 (1986).
[CrossRef]

1983 (1)

1978 (1)

T. Yajima, H. Sauma, “Study of ultra-fast relaxation processes by resonant Rayleigh-type optical mixing. I. Theory,” Phys. Rev. A 17, 309 (1978); J. J. Song, J. H. Lee, M. D. Levenson, “Picosecond relaxation measurements by polarization spectroscopy in condensed phases,” Phys. Rev. A 17, 1439 (1978).
[CrossRef]

1966 (1)

B. L. Evans, “Optical properties of bismuth tri-iodide,” Proc. R. Soc. London Ser. A 289, 275 (1966).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal, S. Dutta Gupta, “T-matrix approach to the nonlinear susceptibilities of heterogeneous media,” Phys. Rev. A 38, 5678 (1988).
[CrossRef] [PubMed]

Alivisatos, A. P.

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, L. E. Brus, “Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys. 89, 4001 (1988).
[CrossRef]

Bloemer, M.

Bowden, C. M.

Brus, L. E.

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, L. E. Brus, “Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys. 89, 4001 (1988).
[CrossRef]

Chemla, D. S.

S. Schmitt-Rink, D. A. B. Miller, D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113 (1987).
[CrossRef]

Chung, W. M.

C. J. Sandroff, W. M. Chung, “Magic numbers observed in the dissolution of layered semiconductor colloids,” J. Colloid Interface Sci. 115, 593 (1987).
[CrossRef]

C. J. Sandroff, D. M. Hwang, W. M. Chung, “Carrier confinement and special crystallite dimensions in layered semiconductor colloids,” Phys. Rev. B 33, 5953 (1986).
[CrossRef]

Dutta Gupta, S.

G. S. Agarwal, S. Dutta Gupta, “T-matrix approach to the nonlinear susceptibilities of heterogeneous media,” Phys. Rev. A 38, 5678 (1988).
[CrossRef] [PubMed]

Evans, B. L.

B. L. Evans, “Optical properties of bismuth tri-iodide,” Proc. R. Soc. London Ser. A 289, 275 (1966).
[CrossRef]

Flytzanis, C.

Hache, F.

Harris, A. L.

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, L. E. Brus, “Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys. 89, 4001 (1988).
[CrossRef]

Haus, J. W.

Herron, N.

Hwang, D. M.

C. J. Sandroff, D. M. Hwang, W. M. Chung, “Carrier confinement and special crystallite dimensions in layered semiconductor colloids,” Phys. Rev. B 33, 5953 (1986).
[CrossRef]

C. J. Sandroff, S. P. Kelty, D. M. Hwang, “Clusters in solution: growth and optical properties of layered semiconductors with hexagonal and honeycombed structures,” J. Chem. Phys. 85, 5337 (1986).
[CrossRef]

Inguva, R.

Jain, R. K.

R. K. Jain, R. C. Lind, “Degenerate four-wave mixing in semiconductor-doped glasses,” J. Opt. Soc. Am. 73, 647 (1983).
[CrossRef]

R. K. Jain, M. B. Klein, “Degenerate four-wave mixing in semiconductors,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), pp. 345.

Kalyaniwalla, N.

Kelty, S. P.

C. J. Sandroff, S. P. Kelty, D. M. Hwang, “Clusters in solution: growth and optical properties of layered semiconductors with hexagonal and honeycombed structures,” J. Chem. Phys. 85, 5337 (1986).
[CrossRef]

Kim, H. J.

H. J. Kim, B. K. Rhee, “Study of optical properties of BiI3clusters,” New Phys. 29, 519 (1989).

Klein, M. B.

R. K. Jain, M. B. Klein, “Degenerate four-wave mixing in semiconductors,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), pp. 345.

Levinos, N. J.

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, L. E. Brus, “Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys. 89, 4001 (1988).
[CrossRef]

Lewis, M.

Li, Y. Q.

Lind, R. C.

Mahler, W.

McGinnis, B. P.

D. Sarid, B. K. Rhee, B. P. McGinnis, C. J. Sandroff, “Degenerate four-wave mixing from layered semiconductor clusters in the quantum size regime,” Appl. Phys. Lett. 49, 1196 (1986).
[CrossRef]

Miller, D. A. B.

S. Schmitt-Rink, D. A. B. Miller, D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113 (1987).
[CrossRef]

Pantell, R. H.

R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969), Chap. 3.

Persans, P. D.

Puthoff, H. E.

R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969), Chap. 3.

Rhee, B. K.

H. J. Kim, B. K. Rhee, “Study of optical properties of BiI3clusters,” New Phys. 29, 519 (1989).

D. Sarid, B. K. Rhee, B. P. McGinnis, C. J. Sandroff, “Degenerate four-wave mixing from layered semiconductor clusters in the quantum size regime,” Appl. Phys. Lett. 49, 1196 (1986).
[CrossRef]

Ricard, D.

Sandroff, C. J.

C. J. Sandroff, W. M. Chung, “Magic numbers observed in the dissolution of layered semiconductor colloids,” J. Colloid Interface Sci. 115, 593 (1987).
[CrossRef]

C. J. Sandroff, D. M. Hwang, W. M. Chung, “Carrier confinement and special crystallite dimensions in layered semiconductor colloids,” Phys. Rev. B 33, 5953 (1986).
[CrossRef]

D. Sarid, B. K. Rhee, B. P. McGinnis, C. J. Sandroff, “Degenerate four-wave mixing from layered semiconductor clusters in the quantum size regime,” Appl. Phys. Lett. 49, 1196 (1986).
[CrossRef]

C. J. Sandroff, S. P. Kelty, D. M. Hwang, “Clusters in solution: growth and optical properties of layered semiconductors with hexagonal and honeycombed structures,” J. Chem. Phys. 85, 5337 (1986).
[CrossRef]

Sarid, D.

D. Sarid, B. K. Rhee, B. P. McGinnis, C. J. Sandroff, “Degenerate four-wave mixing from layered semiconductor clusters in the quantum size regime,” Appl. Phys. Lett. 49, 1196 (1986).
[CrossRef]

Sauma, H.

T. Yajima, H. Sauma, “Study of ultra-fast relaxation processes by resonant Rayleigh-type optical mixing. I. Theory,” Phys. Rev. A 17, 309 (1978); J. J. Song, J. H. Lee, M. D. Levenson, “Picosecond relaxation measurements by polarization spectroscopy in condensed phases,” Phys. Rev. A 17, 1439 (1978).
[CrossRef]

Schmitt-Rink, S.

S. Schmitt-Rink, D. A. B. Miller, D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113 (1987).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Laser (Oxford U. Press, New York, 1986), Chaps. 3, 30.

Steigerwald, M. L.

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, L. E. Brus, “Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys. 89, 4001 (1988).
[CrossRef]

Stroud, D.

Suna, A.

Sung, C. C.

Tu, A.

Wang, Y.

Wood, V. E.

Wu, Y.-J.

Yajima, T.

T. Yajima, H. Sauma, “Study of ultra-fast relaxation processes by resonant Rayleigh-type optical mixing. I. Theory,” Phys. Rev. A 17, 309 (1978); J. J. Song, J. H. Lee, M. D. Levenson, “Picosecond relaxation measurements by polarization spectroscopy in condensed phases,” Phys. Rev. A 17, 1439 (1978).
[CrossRef]

Appl. Phys. Lett. (1)

D. Sarid, B. K. Rhee, B. P. McGinnis, C. J. Sandroff, “Degenerate four-wave mixing from layered semiconductor clusters in the quantum size regime,” Appl. Phys. Lett. 49, 1196 (1986).
[CrossRef]

J. Chem. Phys. (2)

A. P. Alivisatos, A. L. Harris, N. J. Levinos, M. L. Steigerwald, L. E. Brus, “Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum,” J. Chem. Phys. 89, 4001 (1988).
[CrossRef]

C. J. Sandroff, S. P. Kelty, D. M. Hwang, “Clusters in solution: growth and optical properties of layered semiconductors with hexagonal and honeycombed structures,” J. Chem. Phys. 85, 5337 (1986).
[CrossRef]

J. Colloid Interface Sci. (1)

C. J. Sandroff, W. M. Chung, “Magic numbers observed in the dissolution of layered semiconductor colloids,” J. Colloid Interface Sci. 115, 593 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (6)

New Phys. (1)

H. J. Kim, B. K. Rhee, “Study of optical properties of BiI3clusters,” New Phys. 29, 519 (1989).

Phys. Rev. A (2)

G. S. Agarwal, S. Dutta Gupta, “T-matrix approach to the nonlinear susceptibilities of heterogeneous media,” Phys. Rev. A 38, 5678 (1988).
[CrossRef] [PubMed]

T. Yajima, H. Sauma, “Study of ultra-fast relaxation processes by resonant Rayleigh-type optical mixing. I. Theory,” Phys. Rev. A 17, 309 (1978); J. J. Song, J. H. Lee, M. D. Levenson, “Picosecond relaxation measurements by polarization spectroscopy in condensed phases,” Phys. Rev. A 17, 1439 (1978).
[CrossRef]

Phys. Rev. B (2)

C. J. Sandroff, D. M. Hwang, W. M. Chung, “Carrier confinement and special crystallite dimensions in layered semiconductor colloids,” Phys. Rev. B 33, 5953 (1986).
[CrossRef]

S. Schmitt-Rink, D. A. B. Miller, D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113 (1987).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

B. L. Evans, “Optical properties of bismuth tri-iodide,” Proc. R. Soc. London Ser. A 289, 275 (1966).
[CrossRef]

Other (3)

R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969), Chap. 3.

A. E. Siegman, Laser (Oxford U. Press, New York, 1986), Chaps. 3, 30.

R. K. Jain, M. B. Klein, “Degenerate four-wave mixing in semiconductors,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), pp. 345.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical absorption spectrum of BiI3 microcluster suspended in acetonitrile.

Fig. 2
Fig. 2

Comparison of homogeneous and inhomogeneous saturation as a function of I/Isat.

Fig. 3
Fig. 3

Least-squares fits of experimental data by homogeneous and inhomogeneous broadened two-level model (λ = 490 nm).

Fig. 4
Fig. 4

Intensity-dependent absorption coefficients of BiI3 microclusters suspended in acetonitrile at several frequencies; solid curves are least-squares fits for each case.

Fig. 5
Fig. 5

Change of saturation intensity of BiI3 microclusters as a function of wavelength.

Fig. 6
Fig. 6

Nonlinear-optical susceptibility of BiI3 microclusters suspended in acetonitrile.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

α ( ω ) = α 0 ( ω ) 1 + I / I sat ,
α ( ω ) = α 0 ( ω ) ( 1 + I / I sat ) 1 / 2 .
Im P = χ E χ 0 E - χ 0 I 2 I sat E + χ 0 I 2 4 I sat 2 E - .
Im χ eff ( 3 ) = - n λ α 0 ( ω ) 16 π 2 ( n c 8 π × 10 - 7 ) 1 I sat ,
Im χ eff ( 5 ) = n λ α 0 ( ω ) 32 π 2 ( n c 8 π × 10 - 7 ) 2 1 I sat 2 .
χ eff ( 3 ) p χ m ( 3 ) b × { ( 8 / 15 ) γ x m 2 + ( 2 / 15 ) γ z m 2 [ ( 1 - A x ) b + A x m ] 2 + ( 2 / 15 ) γ x m 2 + ( 3 / 15 ) γ z m 2 [ ( 1 - A z ) b + A z m ] 2 } ,
γ α m = b ( 1 - A α ) b + A α m ,             α = x , z .
χ eff ( 3 ) p 15 b 3 ( 8 + 4 | b m | 2 + 3 | b m | 4 ) χ m ( 3 ) .
α ( ω ) = p ω 3 c m [ 2 ( m 2 + m 2 ) + b 2 ] b 3 / 2 ( m 2 + m 2 ) .
m = + β ( δ + i ) 1 + δ 2 ,
δ = ( Ω - ω ) / Γ .
χ m ( 3 ) ( 5 × 10 4 ) χ eff ( 3 ) .

Metrics