Abstract

A high-resolution cw spectrometer based on difference frequency generation (DFG) in a 20-mm-long AgGaS2 crystal pumped by two stabilized single-frequency cw dye–Ti:sapphire lasers is described. Experiments performed with a Rhodamine 6G and DCM dye laser combination pumped by a 20-W argon laser are reported. Informed radiation is generated from 7 to 9 μm with an ultranarrow linewidth (<0.5 MHz) and an output power 1 μW by making use of 90° type I phase matching. The performance of the DFG laser spectrometer is evaluated by using a portion of the ν2 band of NH3 near 1177 cm−1.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kato, “High-power difference frequency generation at 5–11 μ m in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
    [CrossRef]
  2. D. S. Bethune, A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μ m,” Appl. Phys. B 40, 107 (1986).
    [CrossRef]
  3. P. Mutin, J. P. Boquillon, “Very narrow-bandwidth tunable infrared difference frequency generation with injection-locked dye lasers,” Appl. Phys. B 48, 411 (1989).
    [CrossRef]
  4. A. S. Pine, “Doppler-limited molecular spectroscopy by difference frequency mixing,” J. Opt. Soc. Am. 64, 1683 (1974); “High-resolution methane ν3-band spectra using a stabilized tunable difference-frequency laser system,” J. Opt. Soc. Am. 66, 97 (1976).
    [CrossRef]
  5. D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H ν1band,” Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, A. Mooradian, eds. (Academic, New York, 1989), p. 126.
  6. C. M. Lovejoy, D. J. Nesbitt, P. O. Ogilby, C. D. Moore, “Infrared flash kinetic spectroscopy. The ν1and ν3spectra of singlet methylene,” J. Chem. Phys. 86, 3151 (1987).
    [CrossRef]
  7. B. Wellegehausen, D. Friede, H. Vogt, S. Shaldin, “Generation of tunable cw infrared radiation by difference frequency mixing,” Appl. Phys. 11, 363 (1976).
    [CrossRef]
  8. M. G. Bawendi, B. D. Rehfuss, T. Oka, “Laboratory observation of hot bands of H3+,” J. Chem. Phys. 93, 6200 (1990).
    [CrossRef]
  9. R. S. Feigelson, R. K. Route, “Recent developments in growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113 (1987).
    [CrossRef]
  10. D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
    [CrossRef]
  11. G. D. Boyd, H. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971).
    [CrossRef]
  12. D. C. Hanna, V. V. Rampal, R. C. Smith, “Tunable infrared down-conversion in silver thiogallate,” Opt. Commun. 8, 151 (1973).
    [CrossRef]
  13. R. J. Seymour, F. Zernike, “Infrared radiation tunable from 5.5 to 18.3 μ m generated by mixing in AgGaS2,” Appl. Phys. Lett. 29, 705 (1976).
    [CrossRef]
  14. T. Elsaesser, H. Lobentanzer, A. Seilmeier, “Generation of tunable picosecond pulses in the medium infrared by down-conversion in AgGaS2,” Opt. Commun. 52, 355 (1985).
    [CrossRef]
  15. A. G. Yodh, H. W. K. Tom, G. D. Aumiller, R. S. Miranda, “Generation of tunable mid-infrared picosecond pulses at 76 MHz,” J. Opt. Soc. Am. B 8, 1663 (1991).
    [CrossRef]
  16. Y.-X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
    [CrossRef]
  17. R. L. Byer, R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, V. R. Shen, ed. (Springer-Verlag, New York, 1977), p. 81.
    [CrossRef]
  18. T.-B. Chu, M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523 (1985).
    [CrossRef]
  19. J. L. Hall, S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976).
    [CrossRef]
  20. P. Canarelli, Z. Benko, A. Hielscher, R. Curl, F. K. Tittel, “Measurement of nonlinar coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 1 (1992).
    [CrossRef]
  21. G. Guelachvili, R. K. Narahari, Handbook of Infrared Standards (Academic, New York, 1986).
  22. C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, Orlando, Fla., 1955), Table 13-3, p. 362.

1992 (1)

P. Canarelli, Z. Benko, A. Hielscher, R. Curl, F. K. Tittel, “Measurement of nonlinar coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 1 (1992).
[CrossRef]

1991 (1)

A. G. Yodh, H. W. K. Tom, G. D. Aumiller, R. S. Miranda, “Generation of tunable mid-infrared picosecond pulses at 76 MHz,” J. Opt. Soc. Am. B 8, 1663 (1991).
[CrossRef]

1990 (1)

M. G. Bawendi, B. D. Rehfuss, T. Oka, “Laboratory observation of hot bands of H3+,” J. Chem. Phys. 93, 6200 (1990).
[CrossRef]

1989 (1)

P. Mutin, J. P. Boquillon, “Very narrow-bandwidth tunable infrared difference frequency generation with injection-locked dye lasers,” Appl. Phys. B 48, 411 (1989).
[CrossRef]

1987 (2)

R. S. Feigelson, R. K. Route, “Recent developments in growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113 (1987).
[CrossRef]

C. M. Lovejoy, D. J. Nesbitt, P. O. Ogilby, C. D. Moore, “Infrared flash kinetic spectroscopy. The ν1and ν3spectra of singlet methylene,” J. Chem. Phys. 86, 3151 (1987).
[CrossRef]

1986 (1)

D. S. Bethune, A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μ m,” Appl. Phys. B 40, 107 (1986).
[CrossRef]

1985 (2)

T.-B. Chu, M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523 (1985).
[CrossRef]

T. Elsaesser, H. Lobentanzer, A. Seilmeier, “Generation of tunable picosecond pulses in the medium infrared by down-conversion in AgGaS2,” Opt. Commun. 52, 355 (1985).
[CrossRef]

1984 (2)

Y.-X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

K. Kato, “High-power difference frequency generation at 5–11 μ m in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
[CrossRef]

1976 (3)

J. L. Hall, S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976).
[CrossRef]

B. Wellegehausen, D. Friede, H. Vogt, S. Shaldin, “Generation of tunable cw infrared radiation by difference frequency mixing,” Appl. Phys. 11, 363 (1976).
[CrossRef]

R. J. Seymour, F. Zernike, “Infrared radiation tunable from 5.5 to 18.3 μ m generated by mixing in AgGaS2,” Appl. Phys. Lett. 29, 705 (1976).
[CrossRef]

1974 (1)

A. S. Pine, “Doppler-limited molecular spectroscopy by difference frequency mixing,” J. Opt. Soc. Am. 64, 1683 (1974); “High-resolution methane ν3-band spectra using a stabilized tunable difference-frequency laser system,” J. Opt. Soc. Am. 66, 97 (1976).
[CrossRef]

1973 (1)

D. C. Hanna, V. V. Rampal, R. C. Smith, “Tunable infrared down-conversion in silver thiogallate,” Opt. Commun. 8, 151 (1973).
[CrossRef]

1971 (2)

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
[CrossRef]

G. D. Boyd, H. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

Aumiller, G. D.

A. G. Yodh, H. W. K. Tom, G. D. Aumiller, R. S. Miranda, “Generation of tunable mid-infrared picosecond pulses at 76 MHz,” J. Opt. Soc. Am. B 8, 1663 (1991).
[CrossRef]

Bawendi, M. G.

M. G. Bawendi, B. D. Rehfuss, T. Oka, “Laboratory observation of hot bands of H3+,” J. Chem. Phys. 93, 6200 (1990).
[CrossRef]

Benko, Z.

P. Canarelli, Z. Benko, A. Hielscher, R. Curl, F. K. Tittel, “Measurement of nonlinar coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 1 (1992).
[CrossRef]

Bermejo, D.

D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H ν1band,” Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, A. Mooradian, eds. (Academic, New York, 1989), p. 126.

Bethune, D. S.

D. S. Bethune, A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μ m,” Appl. Phys. B 40, 107 (1986).
[CrossRef]

Boquillon, J. P.

P. Mutin, J. P. Boquillon, “Very narrow-bandwidth tunable infrared difference frequency generation with injection-locked dye lasers,” Appl. Phys. B 48, 411 (1989).
[CrossRef]

Boyd, G. D.

G. D. Boyd, H. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

Broyer, M.

T.-B. Chu, M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523 (1985).
[CrossRef]

Byer, R. L.

Y.-X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

R. L. Byer, R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, V. R. Shen, ed. (Springer-Verlag, New York, 1977), p. 81.
[CrossRef]

Canarelli, P.

P. Canarelli, Z. Benko, A. Hielscher, R. Curl, F. K. Tittel, “Measurement of nonlinar coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 1 (1992).
[CrossRef]

Cancio, P.

D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H ν1band,” Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, A. Mooradian, eds. (Academic, New York, 1989), p. 126.

Chemla, D. S.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
[CrossRef]

Chu, T.-B.

T.-B. Chu, M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523 (1985).
[CrossRef]

Curl, R.

P. Canarelli, Z. Benko, A. Hielscher, R. Curl, F. K. Tittel, “Measurement of nonlinar coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 1 (1992).
[CrossRef]

Domenech, J. L.

D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H ν1band,” Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, A. Mooradian, eds. (Academic, New York, 1989), p. 126.

Eckardt, R. C.

Y.-X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Elsaesser, T.

T. Elsaesser, H. Lobentanzer, A. Seilmeier, “Generation of tunable picosecond pulses in the medium infrared by down-conversion in AgGaS2,” Opt. Commun. 52, 355 (1985).
[CrossRef]

Escribano, R.

D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H ν1band,” Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, A. Mooradian, eds. (Academic, New York, 1989), p. 126.

Fan, Y.-X.

Y.-X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Feigelson, R. S.

R. S. Feigelson, R. K. Route, “Recent developments in growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113 (1987).
[CrossRef]

Y.-X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Friede, D.

B. Wellegehausen, D. Friede, H. Vogt, S. Shaldin, “Generation of tunable cw infrared radiation by difference frequency mixing,” Appl. Phys. 11, 363 (1976).
[CrossRef]

Guelachvili, G.

G. Guelachvili, R. K. Narahari, Handbook of Infrared Standards (Academic, New York, 1986).

Hall, J. L.

J. L. Hall, S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976).
[CrossRef]

Hanna, D. C.

D. C. Hanna, V. V. Rampal, R. C. Smith, “Tunable infrared down-conversion in silver thiogallate,” Opt. Commun. 8, 151 (1973).
[CrossRef]

Herbst, R. L.

R. L. Byer, R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, V. R. Shen, ed. (Springer-Verlag, New York, 1977), p. 81.
[CrossRef]

Hielscher, A.

P. Canarelli, Z. Benko, A. Hielscher, R. Curl, F. K. Tittel, “Measurement of nonlinar coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 1 (1992).
[CrossRef]

Kasper, H.

G. D. Boyd, H. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

Kato, K.

K. Kato, “High-power difference frequency generation at 5–11 μ m in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
[CrossRef]

Kupecek, P. J.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
[CrossRef]

Lee, S. A.

J. L. Hall, S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976).
[CrossRef]

Lobentanzer, H.

T. Elsaesser, H. Lobentanzer, A. Seilmeier, “Generation of tunable picosecond pulses in the medium infrared by down-conversion in AgGaS2,” Opt. Commun. 52, 355 (1985).
[CrossRef]

Lovejoy, C. M.

C. M. Lovejoy, D. J. Nesbitt, P. O. Ogilby, C. D. Moore, “Infrared flash kinetic spectroscopy. The ν1and ν3spectra of singlet methylene,” J. Chem. Phys. 86, 3151 (1987).
[CrossRef]

Luntz, A. C.

D. S. Bethune, A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μ m,” Appl. Phys. B 40, 107 (1986).
[CrossRef]

McFee, J. H.

G. D. Boyd, H. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

Miranda, R. S.

A. G. Yodh, H. W. K. Tom, G. D. Aumiller, R. S. Miranda, “Generation of tunable mid-infrared picosecond pulses at 76 MHz,” J. Opt. Soc. Am. B 8, 1663 (1991).
[CrossRef]

Moore, C. D.

C. M. Lovejoy, D. J. Nesbitt, P. O. Ogilby, C. D. Moore, “Infrared flash kinetic spectroscopy. The ν1and ν3spectra of singlet methylene,” J. Chem. Phys. 86, 3151 (1987).
[CrossRef]

Mutin, P.

P. Mutin, J. P. Boquillon, “Very narrow-bandwidth tunable infrared difference frequency generation with injection-locked dye lasers,” Appl. Phys. B 48, 411 (1989).
[CrossRef]

Narahari, R. K.

G. Guelachvili, R. K. Narahari, Handbook of Infrared Standards (Academic, New York, 1986).

Nesbitt, D. J.

C. M. Lovejoy, D. J. Nesbitt, P. O. Ogilby, C. D. Moore, “Infrared flash kinetic spectroscopy. The ν1and ν3spectra of singlet methylene,” J. Chem. Phys. 86, 3151 (1987).
[CrossRef]

Ogilby, P. O.

C. M. Lovejoy, D. J. Nesbitt, P. O. Ogilby, C. D. Moore, “Infrared flash kinetic spectroscopy. The ν1and ν3spectra of singlet methylene,” J. Chem. Phys. 86, 3151 (1987).
[CrossRef]

Oka, T.

M. G. Bawendi, B. D. Rehfuss, T. Oka, “Laboratory observation of hot bands of H3+,” J. Chem. Phys. 93, 6200 (1990).
[CrossRef]

Pine, A. S.

A. S. Pine, “Doppler-limited molecular spectroscopy by difference frequency mixing,” J. Opt. Soc. Am. 64, 1683 (1974); “High-resolution methane ν3-band spectra using a stabilized tunable difference-frequency laser system,” J. Opt. Soc. Am. 66, 97 (1976).
[CrossRef]

Rampal, V. V.

D. C. Hanna, V. V. Rampal, R. C. Smith, “Tunable infrared down-conversion in silver thiogallate,” Opt. Commun. 8, 151 (1973).
[CrossRef]

Rehfuss, B. D.

M. G. Bawendi, B. D. Rehfuss, T. Oka, “Laboratory observation of hot bands of H3+,” J. Chem. Phys. 93, 6200 (1990).
[CrossRef]

Robertson, D. S.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
[CrossRef]

Route, R. K.

R. S. Feigelson, R. K. Route, “Recent developments in growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113 (1987).
[CrossRef]

Y.-X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Santos, J.

D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H ν1band,” Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, A. Mooradian, eds. (Academic, New York, 1989), p. 126.

Schawlow, A. L.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, Orlando, Fla., 1955), Table 13-3, p. 362.

Seilmeier, A.

T. Elsaesser, H. Lobentanzer, A. Seilmeier, “Generation of tunable picosecond pulses in the medium infrared by down-conversion in AgGaS2,” Opt. Commun. 52, 355 (1985).
[CrossRef]

Seymour, R. J.

R. J. Seymour, F. Zernike, “Infrared radiation tunable from 5.5 to 18.3 μ m generated by mixing in AgGaS2,” Appl. Phys. Lett. 29, 705 (1976).
[CrossRef]

Shaldin, S.

B. Wellegehausen, D. Friede, H. Vogt, S. Shaldin, “Generation of tunable cw infrared radiation by difference frequency mixing,” Appl. Phys. 11, 363 (1976).
[CrossRef]

Smith, R. C.

D. C. Hanna, V. V. Rampal, R. C. Smith, “Tunable infrared down-conversion in silver thiogallate,” Opt. Commun. 8, 151 (1973).
[CrossRef]

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
[CrossRef]

Tittel, F. K.

P. Canarelli, Z. Benko, A. Hielscher, R. Curl, F. K. Tittel, “Measurement of nonlinar coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 1 (1992).
[CrossRef]

Tom, H. W. K.

A. G. Yodh, H. W. K. Tom, G. D. Aumiller, R. S. Miranda, “Generation of tunable mid-infrared picosecond pulses at 76 MHz,” J. Opt. Soc. Am. B 8, 1663 (1991).
[CrossRef]

Townes, C. H.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, Orlando, Fla., 1955), Table 13-3, p. 362.

Vogt, H.

B. Wellegehausen, D. Friede, H. Vogt, S. Shaldin, “Generation of tunable cw infrared radiation by difference frequency mixing,” Appl. Phys. 11, 363 (1976).
[CrossRef]

Wellegehausen, B.

B. Wellegehausen, D. Friede, H. Vogt, S. Shaldin, “Generation of tunable cw infrared radiation by difference frequency mixing,” Appl. Phys. 11, 363 (1976).
[CrossRef]

Yodh, A. G.

A. G. Yodh, H. W. K. Tom, G. D. Aumiller, R. S. Miranda, “Generation of tunable mid-infrared picosecond pulses at 76 MHz,” J. Opt. Soc. Am. B 8, 1663 (1991).
[CrossRef]

Zernike, F.

R. J. Seymour, F. Zernike, “Infrared radiation tunable from 5.5 to 18.3 μ m generated by mixing in AgGaS2,” Appl. Phys. Lett. 29, 705 (1976).
[CrossRef]

Appl. Phys. (1)

B. Wellegehausen, D. Friede, H. Vogt, S. Shaldin, “Generation of tunable cw infrared radiation by difference frequency mixing,” Appl. Phys. 11, 363 (1976).
[CrossRef]

Appl. Phys. B (2)

D. S. Bethune, A. C. Luntz, “A laser infrared source of nanosecond pulses tunable from 1.4 to 22 μ m,” Appl. Phys. B 40, 107 (1986).
[CrossRef]

P. Mutin, J. P. Boquillon, “Very narrow-bandwidth tunable infrared difference frequency generation with injection-locked dye lasers,” Appl. Phys. B 48, 411 (1989).
[CrossRef]

Appl. Phys. Lett. (3)

R. J. Seymour, F. Zernike, “Infrared radiation tunable from 5.5 to 18.3 μ m generated by mixing in AgGaS2,” Appl. Phys. Lett. 29, 705 (1976).
[CrossRef]

Y.-X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

J. L. Hall, S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976).
[CrossRef]

IEEE J. Quantum Electron. (3)

P. Canarelli, Z. Benko, A. Hielscher, R. Curl, F. K. Tittel, “Measurement of nonlinar coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 28, 1 (1992).
[CrossRef]

G. D. Boyd, H. Kasper, J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

K. Kato, “High-power difference frequency generation at 5–11 μ m in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
[CrossRef]

J. Chem. Phys. (1)

M. G. Bawendi, B. D. Rehfuss, T. Oka, “Laboratory observation of hot bands of H3+,” J. Chem. Phys. 93, 6200 (1990).
[CrossRef]

J. Chem. Phys. (1)

C. M. Lovejoy, D. J. Nesbitt, P. O. Ogilby, C. D. Moore, “Infrared flash kinetic spectroscopy. The ν1and ν3spectra of singlet methylene,” J. Chem. Phys. 86, 3151 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

A. S. Pine, “Doppler-limited molecular spectroscopy by difference frequency mixing,” J. Opt. Soc. Am. 64, 1683 (1974); “High-resolution methane ν3-band spectra using a stabilized tunable difference-frequency laser system,” J. Opt. Soc. Am. 66, 97 (1976).
[CrossRef]

J. Opt. Soc. Am. B (1)

A. G. Yodh, H. W. K. Tom, G. D. Aumiller, R. S. Miranda, “Generation of tunable mid-infrared picosecond pulses at 76 MHz,” J. Opt. Soc. Am. B 8, 1663 (1991).
[CrossRef]

J. Phys. (Paris) (1)

T.-B. Chu, M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523 (1985).
[CrossRef]

Opt. Commun. (1)

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, “Silver thiogallate, a new material with potential for infrared devices,” Opt. Commun. 3, 29 (1971).
[CrossRef]

Opt. Commun. (2)

D. C. Hanna, V. V. Rampal, R. C. Smith, “Tunable infrared down-conversion in silver thiogallate,” Opt. Commun. 8, 151 (1973).
[CrossRef]

T. Elsaesser, H. Lobentanzer, A. Seilmeier, “Generation of tunable picosecond pulses in the medium infrared by down-conversion in AgGaS2,” Opt. Commun. 52, 355 (1985).
[CrossRef]

Opt. Eng. (1)

R. S. Feigelson, R. K. Route, “Recent developments in growth of chalcopyrite crystals for nonlinear infrared applications,” Opt. Eng. 26, 113 (1987).
[CrossRef]

Other (4)

D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H ν1band,” Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, A. Mooradian, eds. (Academic, New York, 1989), p. 126.

R. L. Byer, R. L. Herbst, “Parametric oscillation and mixing,” in Nonlinear Infrared Generation, V. R. Shen, ed. (Springer-Verlag, New York, 1977), p. 81.
[CrossRef]

G. Guelachvili, R. K. Narahari, Handbook of Infrared Standards (Academic, New York, 1986).

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, Orlando, Fla., 1955), Table 13-3, p. 362.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

90° phase-matching curves of AgGaS2 based on the refractive-index data given in Ref. 15.

Fig. 2
Fig. 2

Plot of the focusing function h(μ, ξ) versus the ξ = l/b parameter for μ equal to 0.7, 0.8, and 0.9 (μ = ks/kp).

Fig. 3
Fig. 3

Calculated DFG output power as a function of the wavelength. The case of focused Gaussian beams in AgGaS2 is considered in the calculation. A value of 31 pm/V (Ref. 19) is used for d36.

Fig. 4
Fig. 4

Schematic diagram of the cw DFG infrared laser spectrometer system. B. S.’s, beam splitters; Polar., polarization.

Fig. 5
Fig. 5

Experimental 90° phase-matching curve of AgGaS2. The solid curve corresponds to the calculated curve.

Fig. 6
Fig. 6

Dependence of infrared DFG power and conversion efficiency on the infrared wavelength for AgGaS2. The filled triangles and circles denote the IR power and the percentage of the theoretically determined efficiency, respectively.

Fig. 7
Fig. 7

Dependence of the output power on the pump wavelength tuned close to its phase-matching value at 598.28 nm. The signal wavelength is fixed at 634.0 nm.

Fig. 8
Fig. 8

High-resolution spectrum of the absorption band of NH3 near 1177 cm−1. The NH3 pressure is 1 Torr, and the absorption path length is 30 cm. The inset shows the shape of the line near 1177.145 cm−1 compared with that predicted from the Doppler width corrected by a pressure-broadening contribution of 20 MHz. ΔνTot = [(ΔνDopp)2 + (Δνpress)2]1/2.

Fig. 9
Fig. 9

Survey absorption spectrum of the ν2 band of NH3 between 1170 and 1180 cm−1. The NH3 pressure is 2 Torr, and the absorption path length is 30 cm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P i = 4 ω i 2 k s d eff 2 l 0 π c 3 n p n s n i ( 1 + μ ) P s P p h ( μ , ξ ) ,
P i = ( 16 π ω i d eff ) 2 n p n s n i c 3 h ( μ , ξ ) ( k s - 1 + k p - 1 ) l P s P p ,
h ( μ , ξ ) = 1 2 ξ 0 ξ d τ - ξ ξ d τ 1 + τ τ ( 1 + τ τ ) 2 + ¼ [ ( 1 - μ ) / ( 1 + μ ) ] + [ ( 1 + μ ) / ( 1 - μ ) ] 2 ( τ - τ ) 2 .
P i = ( 2 ω i d eff ) 2 n p n s n i c 3 π 0 h ( μ , ξ ) ( k s - 1 + k p - 1 ) l P s P p ,
P i = ( 16 π ω i d eff ) 2 n p n s n i c 3 l 2 w s 2 + w p 2 P s P p             ( cgs ) ,
P i = ( 2 ω i d eff ) 2 n p n s n i c 3 π 0 l 2 w s 2 + w p 2 P s P p             ( mks ) .

Metrics