Abstract

The importance of electrochromic effects in the ellipsometric determination of the electro-optic coefficient of poled polymer films is discussed. A relation between electrochromism and the complex electro-optic coefficient is proposed. The dispersion of the electro-optic coefficient for the charge-transfer molecules is shown to follow the simple two-level model.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  2. D. J. Williams, “Organic polymeric and non-polymeric materials with large optical nonlinearities,” Angew. Chem. Int. Ed. Engl. 23, 690–703 (1984).
    [CrossRef]
  3. J. Schildkraut, “Determination of the electro-optic coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2841 (1990).
    [CrossRef] [PubMed]
  4. W. Liptay, “Electrochromism and solvatochromism,” Angew. Chem. Int. Ed. Eng. 8, 177–188 (1969).
    [CrossRef]
  5. R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Wilson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
    [CrossRef]
  6. G. Khanarian, T. Che, R. N. De Martino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, “Characterization of polymeric nonlinear organic materials,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 72–78 (1988).
  7. L. P. Mosteller and F. Wooten, “Optical properties and reflectance of uniaxial absorbing crystals,” J. Opt. Soc. Am. 58, 511–518 (1968).
    [CrossRef]
  8. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1989).
  9. A. P. Marchetti, M. Scozzafava, and R. H. Young, “Electrochromism of an aggregating thiapyrylium dye,” J. Chem. Phys. 89, 1827–1838 (1988).
    [CrossRef]
  10. D. R. Robello and R. J. Perry, “Efficient grafting of chromophores to styrenic polymers via palladium-catalyzed carbonylation,” Macromolecules (to be published).
  11. F. Zernike, “Fabrication and measurements of passive components,” in Integrated Optics, T. Tamir, ed. (Springer-Verlag, Berlin, 1979).
  12. M. D. Himel and U. J. Gibson, “Measurement of planar waveguide losses using a coherent fiber bundle,” Appl. Opt. 25, 4413–4416 (1986).
    [CrossRef] [PubMed]
  13. W. Liptay, “Dipole moments and polarizabilities of molecules in excited electronic states,” in Excited States, E. C. Lim, ed.(Academic, New York, 1974), Vol. 1, pp. 129–229.

1990 (2)

1988 (1)

A. P. Marchetti, M. Scozzafava, and R. H. Young, “Electrochromism of an aggregating thiapyrylium dye,” J. Chem. Phys. 89, 1827–1838 (1988).
[CrossRef]

1986 (1)

1984 (1)

D. J. Williams, “Organic polymeric and non-polymeric materials with large optical nonlinearities,” Angew. Chem. Int. Ed. Engl. 23, 690–703 (1984).
[CrossRef]

1969 (1)

W. Liptay, “Electrochromism and solvatochromism,” Angew. Chem. Int. Ed. Eng. 8, 177–188 (1969).
[CrossRef]

1968 (1)

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1989).

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1989).

Bjorklund, G. C.

Che, T.

G. Khanarian, T. Che, R. N. De Martino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, “Characterization of polymeric nonlinear organic materials,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 72–78 (1988).

De Martino, R. N.

G. Khanarian, T. Che, R. N. De Martino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, “Characterization of polymeric nonlinear organic materials,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 72–78 (1988).

Gibson, U. J.

Haas, D.

G. Khanarian, T. Che, R. N. De Martino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, “Characterization of polymeric nonlinear organic materials,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 72–78 (1988).

Himel, M. D.

Jurich, M. C.

Khanarian, G.

G. Khanarian, T. Che, R. N. De Martino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, “Characterization of polymeric nonlinear organic materials,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 72–78 (1988).

Leslie, T.

G. Khanarian, T. Che, R. N. De Martino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, “Characterization of polymeric nonlinear organic materials,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 72–78 (1988).

Liptay, W.

W. Liptay, “Electrochromism and solvatochromism,” Angew. Chem. Int. Ed. Eng. 8, 177–188 (1969).
[CrossRef]

W. Liptay, “Dipole moments and polarizabilities of molecules in excited electronic states,” in Excited States, E. C. Lim, ed.(Academic, New York, 1974), Vol. 1, pp. 129–229.

Man, H. T.

G. Khanarian, T. Che, R. N. De Martino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, “Characterization of polymeric nonlinear organic materials,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 72–78 (1988).

Marchetti, A. P.

A. P. Marchetti, M. Scozzafava, and R. H. Young, “Electrochromism of an aggregating thiapyrylium dye,” J. Chem. Phys. 89, 1827–1838 (1988).
[CrossRef]

Mosteller, L. P.

Page, R. H.

Perry, R. J.

D. R. Robello and R. J. Perry, “Efficient grafting of chromophores to styrenic polymers via palladium-catalyzed carbonylation,” Macromolecules (to be published).

Prasad, P. N.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Reck, B.

Robello, D. R.

D. R. Robello and R. J. Perry, “Efficient grafting of chromophores to styrenic polymers via palladium-catalyzed carbonylation,” Macromolecules (to be published).

Sansone, M.

G. Khanarian, T. Che, R. N. De Martino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, “Characterization of polymeric nonlinear organic materials,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 72–78 (1988).

Schildkraut, J.

Scozzafava, M.

A. P. Marchetti, M. Scozzafava, and R. H. Young, “Electrochromism of an aggregating thiapyrylium dye,” J. Chem. Phys. 89, 1827–1838 (1988).
[CrossRef]

Sen, A.

Stamatoff, J. B.

G. Khanarian, T. Che, R. N. De Martino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, “Characterization of polymeric nonlinear organic materials,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 72–78 (1988).

Swalen, J. D.

Teng, C. C.

G. Khanarian, T. Che, R. N. De Martino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, “Characterization of polymeric nonlinear organic materials,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 72–78 (1988).

Twieg, R. J.

Williams, D. J.

D. J. Williams, “Organic polymeric and non-polymeric materials with large optical nonlinearities,” Angew. Chem. Int. Ed. Engl. 23, 690–703 (1984).
[CrossRef]

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Wilson, C. G.

Wooten, F.

Yoon, H. N.

G. Khanarian, T. Che, R. N. De Martino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, “Characterization of polymeric nonlinear organic materials,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 72–78 (1988).

Young, R. H.

A. P. Marchetti, M. Scozzafava, and R. H. Young, “Electrochromism of an aggregating thiapyrylium dye,” J. Chem. Phys. 89, 1827–1838 (1988).
[CrossRef]

Zernike, F.

F. Zernike, “Fabrication and measurements of passive components,” in Integrated Optics, T. Tamir, ed. (Springer-Verlag, Berlin, 1979).

Angew. Chem. Int. Ed. Eng. (1)

W. Liptay, “Electrochromism and solvatochromism,” Angew. Chem. Int. Ed. Eng. 8, 177–188 (1969).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

D. J. Williams, “Organic polymeric and non-polymeric materials with large optical nonlinearities,” Angew. Chem. Int. Ed. Engl. 23, 690–703 (1984).
[CrossRef]

Appl. Opt. (2)

J. Chem. Phys. (1)

A. P. Marchetti, M. Scozzafava, and R. H. Young, “Electrochromism of an aggregating thiapyrylium dye,” J. Chem. Phys. 89, 1827–1838 (1988).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Other (6)

G. Khanarian, T. Che, R. N. De Martino, D. Haas, T. Leslie, H. T. Man, M. Sansone, J. B. Stamatoff, C. C. Teng, and H. N. Yoon, “Characterization of polymeric nonlinear organic materials,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 72–78 (1988).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1989).

D. R. Robello and R. J. Perry, “Efficient grafting of chromophores to styrenic polymers via palladium-catalyzed carbonylation,” Macromolecules (to be published).

F. Zernike, “Fabrication and measurements of passive components,” in Integrated Optics, T. Tamir, ed. (Springer-Verlag, Berlin, 1979).

W. Liptay, “Dipole moments and polarizabilities of molecules in excited electronic states,” in Excited States, E. C. Lim, ed.(Academic, New York, 1974), Vol. 1, pp. 129–229.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Molecular structure of the NLO polymers used in the experiment: (a) stilbene, (b) phenyl.

Fig. 2
Fig. 2

Absorption spectra for the stilbene, S, and the phenyl, P, NLO polymer. Solid curve, left axis: absorption spectrum of 0.02 wt. % in N,N-dimethylacetamide. Dashed curve, right axis: absorption spectrum of 25 wt. % in N,N-dimethylacetamide.

Fig. 3
Fig. 3

Experimental setup for the ellipsometric determination of the electro-optic coefficient. A, analyzer; C, compensator; ITO, indium tin oxide transparent electrode; P, polarizer; D, diaphragm; PD, photodiode; V, applied voltage.

Fig. 4
Fig. 4

Iac as a function of Idc for the ellipsometric determination of the electro-optic coefficient for the phenyl NLO polymer at 830 nm. The solid curve is a fit to Eq. (15).

Fig. 5
Fig. 5

Iac as a function of Idc for the ellipsometric determination of the electro-optic coefficient for the stilbene NLO polymer at 457.9 nm. The solid curve is a fit to Eq. (16).

Fig. 6
Fig. 6

Dispersion of the real part r33 of the electro-optic coefficient for the stilbene NLO polymer when electrochromic effects are neglected. Note the large estimated uncertainties and scatter in the data.

Fig. 7
Fig. 7

Dispersion of the real part r33 of the electro-optic coefficient for the stilbene and the phenyl NLO polymers. The solid curves show the trend in the data.

Fig. 8
Fig. 8

Dispersion of the imaginary part s33 of the electro-optic coefficient for the stilbene and the phenyl NLO polymers. The solid curves are spline curves showing the trend in the data.

Fig. 9
Fig. 9

Dispersion of the real part of the refractive index for the stilbene and the phenyl NLO polymers. The solid curves are fits to a single-term Sellmeier equation. Obtained fit parameters are given in Table 2.

Fig. 10
Fig. 10

Dispersion of r33n4 for the stilbene and the phenyl NLO polymers. The solid curves are fits to Eq. (41). Obtained fit parameters are given in Table 5.

Tables (5)

Tables Icon

Table 1 Real Part r33 and Imaginary Part s33 of the Electro-Optic Coefficients and Calculated n4r33a

Tables Icon

Table 2 Refractive Indices for Wavelengths Useda

Tables Icon

Table 3 Sellmeier Fit Parameters for Polystyrene and NLO Polymer Films Useda

Tables Icon

Table 4 Film Thickness tf(μm) for Polystyrene and NLO Polymer Films Useda

Tables Icon

Table 5 Parameters for Fit to Eq. (41) for Stilbene and Phenyl NLO Polymers

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

d Δ / d V = ( 1 / 3 ) m k n 3 ( tan ϕ ) ( sin ϕ ) r 33 ,
I dc = ( 1 / 4 ) | r s | 2 [ 1 + ( tan 2 Φ ) 2 ( tan Φ ) cos ( Δ + Ω c ) ] ,
r p / r s = ( tan Φ ) exp ( i Δ ) .
r p = | r p | exp ( i δ r p ) ,
r s = | r s | exp ( i δ r s ) ,
tan Φ = | r p | / | r s | ,
Δ = δ r p δ r s .
( r p / r p 0 ) / ( r s / r s 0 ) = exp [ i ( Δ Δ 0 ) ] = exp ( i δ Δ ) ,
δ I dc / δ Δ = ( 1 / 2 ) | r s | 2 ( tan Φ ) sin ( Δ + Ω c ) ,
I ac = d I dc / d V = ( δ I dc / δ Δ ) ( d Δ / d V ) .
δ I dc / δ tan Φ = ( 1 / 2 ) | r s | 2 [ ( tan Φ ) cos ( Δ + Ω c ) ] .
d | r s | 2 / d V = 0 .
I ac = ( δ I dc / δ Δ ) ( d Δ / d V ) + ( δ I dc / δ tan Φ ) ( d ) tan Φ / d V ) .
X = ( I dc I 0 ) / I 0 = 2 ( tan Φ ) cos ( Δ + Ω c ) / ( 1 + tan 2 Φ ) ,
Y = I ac / I 0 = 2 ( tan Φ ) sin ( Δ + Ω c ) ( d Δ / d V ) / ( 1 + tan 2 Φ ) ,
X 2 + Y 2 / ( d Δ / d V ) 2 = [ 2 tan Φ / ( 1 + tan 2 Φ ) ] 2 .
Y = 2 tan Φ / ( 1 + tan 2 Φ ) [ sin ( Δ + Ω c ) ( d Δ / d V ) + ( d tan Φ / d V ) cos ( Δ + Ω c ) ( d tan Φ / d V ) ] .
Δ / F 2 = A + ( B / 15 h ) d ( / ν ) / d ν + ( C ν / 30 h 2 ) d 2 ( / ν ) / d ν 2 .
C = 3 δ μ 2 ( 2 cos 2 Θ ) ,
δ ( 1 / n ̂ 2 ) i = j r ̂ i j E j .
r ̂ i j = r i j i s i j ,
δ [ ( n 2 k 2 ) / ( n 2 + k 2 ) 2 ] = j r i j E j ,
δ [ n k / ( n 2 + k 2 ) 2 ] = ( 1 / 2 ) j s i j E j .
δ ( 1 / n 2 ) i = j r i j E j ,
δ n 3 = ( 1 / 2 ) n 3 3 r 33 E ,
δ k 3 = ( 1 / 2 ) n 3 3 s 33 E .
tan Φ = | r p | / | r s | ,
tan Φ tan Φ 0 = [ E p exp ( m k p d ) ] / [ E s exp ( m k s d ) ] [ E p exp ( m k p 0 d ) ] / [ E s exp ( m k s 0 d ) ] ,
tan Φ tan Φ 0 = exp [ m ( k p k s ) d ] exp [ m ( k p 0 k s 0 ) d ] .
tan Φ tan Φ 0 = 1 m ( k p k s ) d [ 1 m ( k p 0 k s 0 ) d ] .
δ tan Φ = m δ ( k p k s ) d ,
δ tan Φ = ( 2 π m d / λ ) δ ( k t cos φ p k t cos φ s ) ,
δ tan Φ = ( 2 π m d / λ ) ( tan φ ) ( sin φ ) ( δ k t δ k n ) ,
d tan Φ / d V = ( 1 / 3 ) m k n 3 ( tan φ ) ( sin φ ) s 33 ,
r i j = 8 π χ i j k ( 2 ) / n i 2 n j 2 ,
χ Z Z Z ( 2 ) = N F μ E β Z / 5 k T ,
F = f 0 f ν f ν ,
f 0 = 0 ( ν + 2 ) / ( 2 0 + ν ) ,
f ν = ( ν + 2 ) / 3 .
β ct ( 2 ν ; ν , ν ) = 3 e 2 h 2 E 0 f δ μ / 2 m [ E 0 2 ( h ν ) 2 ] × [ E 0 2 ( 2 h ν ) 2 ] ,
β ct ( ν ; ν , 0 ) = 3 e 2 h 2 f δ μ / 2 m E 0 ( E 0 2 h ν 2 ) .
r 33 n 4 = ( r 33 n 4 ) 0 + f λ 2 / ( λ 2 λ 0 2 ) ,

Metrics