Abstract

The nonlinear optical properties of fluorescein-doped boric acid glass films have been investigated with sub-nanosecond laser pulses. With the use of degenerate four-wave mixing, large third-order susceptibilities of χ(3) ∼ 10−7 esu have been measured, connected to the relatively fast decay of the singlet state S1 (τ = 2.4 ± 0.6 ns). This particular system has a long-lived lowest-lying triplet state (0.1–1 s), and the transient nonlinear-optical and fluorescence properties show a marked dependence on the laser-pulse repetition rate in this time regime.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Kramer, W R. Tompkin, and R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
    [Crossref] [PubMed]
  2. W. R. Tompkin, R. W. Boyd, D. W. Hall, and P. A. Tick, J. Opt. Soc. Am. B 4, 1030 (1987).
    [Crossref]
  3. Y. Silberberg and I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
    [Crossref]
  4. S. A. Boothroyd, J. Chrostowski, and M. S. O’Sullivan, J. Opt. Soc. Am. B 6, 766 (1989).
    [Crossref]
  5. A. Penzkofer and W. Blau, Opt. Quantum Electron. 15, 325 (1983).
    [Crossref]
  6. H. E. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
    [Crossref]
  7. R. A. Fischer, ed., Optical Phase Conjugation (Academic, New York, 1983).
  8. C. Flytzanis and J. L. Oudar, eds., Nonlinear Optics: Materials and Devices, Springer Proceedings in Physics 7 (Springer-Verlag, Berlin, 1986).
    [Crossref]
  9. W. Blau, H. Byrne, and J. M. Kelly, Opt. Commun. 56, 25 (1985).
    [Crossref]
  10. P. Horan, W. Blau, H. Byrne, and P. Berglund, Appl. Opt. 29, 31 (1990).
    [Crossref] [PubMed]
  11. M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, Opt. Commun. 53, 412 (1985).
    [Crossref]
  12. See, e.g., G. M. Carter, J. Opt. Soc. Am. B 4, 1018 (1987).
    [Crossref]
  13. M. Frakowiak and H. Walerys, Acta Phys. Polon. 18, 93 (1959).

1990 (1)

1989 (1)

1987 (2)

1986 (1)

M. A. Kramer, W R. Tompkin, and R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[Crossref] [PubMed]

1985 (2)

W. Blau, H. Byrne, and J. M. Kelly, Opt. Commun. 56, 25 (1985).
[Crossref]

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, Opt. Commun. 53, 412 (1985).
[Crossref]

1983 (1)

A. Penzkofer and W. Blau, Opt. Quantum Electron. 15, 325 (1983).
[Crossref]

1981 (1)

Y. Silberberg and I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
[Crossref]

1959 (1)

M. Frakowiak and H. Walerys, Acta Phys. Polon. 18, 93 (1959).

Bar-Joseph, I.

Y. Silberberg and I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
[Crossref]

Berglund, P.

Blau, W.

P. Horan, W. Blau, H. Byrne, and P. Berglund, Appl. Opt. 29, 31 (1990).
[Crossref] [PubMed]

W. Blau, H. Byrne, and J. M. Kelly, Opt. Commun. 56, 25 (1985).
[Crossref]

A. Penzkofer and W. Blau, Opt. Quantum Electron. 15, 325 (1983).
[Crossref]

Boothroyd, S. A.

Boyd, R. W.

Byrne, H.

Carter, G. M.

Chrostowski, J.

Eichler, H. E.

H. E. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[Crossref]

Frakowiak, M.

M. Frakowiak and H. Walerys, Acta Phys. Polon. 18, 93 (1959).

Günter, P.

H. E. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[Crossref]

Hall, D. W.

Horan, P.

Kabelka, V.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, Opt. Commun. 53, 412 (1985).
[Crossref]

Kelly, J. M.

W. Blau, H. Byrne, and J. M. Kelly, Opt. Commun. 56, 25 (1985).
[Crossref]

Kramer, M. A.

M. A. Kramer, W R. Tompkin, and R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[Crossref] [PubMed]

Masalov, A. V.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, Opt. Commun. 53, 412 (1985).
[Crossref]

O’Sullivan, M. S.

Penzkofer, A.

A. Penzkofer and W. Blau, Opt. Quantum Electron. 15, 325 (1983).
[Crossref]

Pohl, D. W.

H. E. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[Crossref]

Silberberg, Y.

Y. Silberberg and I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
[Crossref]

Tick, P. A.

Tompkin, W R.

M. A. Kramer, W R. Tompkin, and R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[Crossref] [PubMed]

Tompkin, W. R.

Vasil’eva, M. A.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, Opt. Commun. 53, 412 (1985).
[Crossref]

Vischakas, J.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, Opt. Commun. 53, 412 (1985).
[Crossref]

Walerys, H.

M. Frakowiak and H. Walerys, Acta Phys. Polon. 18, 93 (1959).

Acta Phys. Polon. (1)

M. Frakowiak and H. Walerys, Acta Phys. Polon. 18, 93 (1959).

Appl. Opt. (1)

J. Opt. Soc. Am. B (3)

Opt. Commun. (3)

Y. Silberberg and I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
[Crossref]

W. Blau, H. Byrne, and J. M. Kelly, Opt. Commun. 56, 25 (1985).
[Crossref]

M. A. Vasil’eva, J. Vischakas, V. Kabelka, and A. V. Masalov, Opt. Commun. 53, 412 (1985).
[Crossref]

Opt. Quantum Electron. (1)

A. Penzkofer and W. Blau, Opt. Quantum Electron. 15, 325 (1983).
[Crossref]

Phys. Rev. A (1)

M. A. Kramer, W R. Tompkin, and R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[Crossref] [PubMed]

Other (3)

H. E. Eichler, P. Günter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[Crossref]

R. A. Fischer, ed., Optical Phase Conjugation (Academic, New York, 1983).

C. Flytzanis and J. L. Oudar, eds., Nonlinear Optics: Materials and Devices, Springer Proceedings in Physics 7 (Springer-Verlag, Berlin, 1986).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Intensity-dependent transmission of the fluorescine-doped boric acid glass. The solid curve is a computer fit of the experimental data using a rate-equation model as described in Ref. 5.

Fig. 2
Fig. 2

Experimental setup for forward DFWM.

Fig. 3
Fig. 3

Intensity dependence of the diffraction efficiency in forward four-wave mixing showing saturation at high intensities. The solid portion depicts a line with slope 2 as predicted by Eq. (2).

Fig. 4
Fig. 4

Wavelength dependence of the nonlinear susceptibility χ(3). The solid line represents a guide to the eye.

Fig. 5
Fig. 5

Diffracted signal intensity as a function of the writing-beam delay in forward four-wave mixing. The solid curve depicts a fit to a squared hyperbolic secant temporal pulse profile, and the dashed curve represents a fit to a Gaussian pulse shape.

Fig. 6
Fig. 6

Temporal decay of the diffracted intensity as measured in the folded boxcars geometry. The solid curve is a computer fit using a laser-pulse duration of 200 ps and a grating decay time of 1.2 ns.

Fig. 7
Fig. 7

(a) Variation of nonlinear susceptibility χ(3) with laser repetition period. (b) Variation of sample fluorescence with laser repetition period. In both plots the solid curve represents a guide to the eye.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

σ ex = σ 0 ln ( T ex / T 0 ) ,
| χ ( 3 ) | = 4 0 c α n 2 λ η 1 / 2 3 π T 1 / 2 ( 1 T ) I 0 ,
κ 2 = 1 + χ .
Δ κ = Δ χ / 2 ( 1 + χ ) 1 / 2 .
P i = 1 2 0 [ χ i j ( 1 ) A j + 3 4 χ i j k l ( 3 ) A j A k A l + ] = 1 2 0 [ χ i j ( 1 ) A j + Δ χ i j A j ] ,
Δ χ i j = 3 4 χ i j k l ( 3 ) A k A l + ,
Δ κ = 3 χ i j k l ( 3 ) A j A l / 8 κ .
I d / I c = η = | π Δ κ d / λ c | 2 .
η = T I d / I c ,
| χ ( 3 ) | = 8 κ λ η 1 / 2 3 π d A k A l .
A k A l = 2 I / 0 c κ ,
| χ ( 3 ) | = 4 0 c κ 2 λ η 1 / 2 3 π d I .
| χ ( 3 ) | = 4 0 c n 2 λ α η 1 / 2 3 π I T 1 / 2 ( 1 T )

Metrics