Abstract

The nonlinear optical properties of fluorescein-doped boric acid glass films have been investigated with sub-nanosecond laser pulses. With the use of degenerate four-wave mixing, large third-order susceptibilities of χ(3) ∼ 10−7 esu have been measured, connected to the relatively fast decay of the singlet state S1 (τ = 2.4 ± 0.6 ns). This particular system has a long-lived lowest-lying triplet state (0.1–1 s), and the transient nonlinear-optical and fluorescence properties show a marked dependence on the laser-pulse repetition rate in this time regime.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Kramer, W R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
    [CrossRef] [PubMed]
  2. W. R. Tompkin, R. W. Boyd, D. W. Hall, P. A. Tick, J. Opt. Soc. Am. B 4, 1030 (1987).
    [CrossRef]
  3. Y. Silberberg, I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
    [CrossRef]
  4. S. A. Boothroyd, J. Chrostowski, M. S. O’Sullivan, J. Opt. Soc. Am. B 6, 766 (1989).
    [CrossRef]
  5. A. Penzkofer, W. Blau, Opt. Quantum Electron. 15, 325 (1983).
    [CrossRef]
  6. H. E. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
    [CrossRef]
  7. R. A. Fischer, ed., Optical Phase Conjugation (Academic, New York, 1983).
  8. C. Flytzanis, J. L. Oudar, eds., Nonlinear Optics: Materials and Devices, Springer Proceedings in Physics 7 (Springer-Verlag, Berlin, 1986).
    [CrossRef]
  9. W. Blau, H. Byrne, J. M. Kelly, Opt. Commun. 56, 25 (1985).
    [CrossRef]
  10. P. Horan, W. Blau, H. Byrne, P. Berglund, Appl. Opt. 29, 31 (1990).
    [CrossRef] [PubMed]
  11. M. A. Vasil’eva, J. Vischakas, V. Kabelka, A. V. Masalov, Opt. Commun. 53, 412 (1985).
    [CrossRef]
  12. See, e.g., G. M. Carter, J. Opt. Soc. Am. B 4, 1018 (1987).
    [CrossRef]
  13. M. Frakowiak, H. Walerys, Acta Phys. Polon. 18, 93 (1959).

1990 (1)

1989 (1)

1987 (2)

1986 (1)

M. A. Kramer, W R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

1985 (2)

W. Blau, H. Byrne, J. M. Kelly, Opt. Commun. 56, 25 (1985).
[CrossRef]

M. A. Vasil’eva, J. Vischakas, V. Kabelka, A. V. Masalov, Opt. Commun. 53, 412 (1985).
[CrossRef]

1983 (1)

A. Penzkofer, W. Blau, Opt. Quantum Electron. 15, 325 (1983).
[CrossRef]

1981 (1)

Y. Silberberg, I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
[CrossRef]

1959 (1)

M. Frakowiak, H. Walerys, Acta Phys. Polon. 18, 93 (1959).

Bar-Joseph, I.

Y. Silberberg, I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
[CrossRef]

Berglund, P.

Blau, W.

P. Horan, W. Blau, H. Byrne, P. Berglund, Appl. Opt. 29, 31 (1990).
[CrossRef] [PubMed]

W. Blau, H. Byrne, J. M. Kelly, Opt. Commun. 56, 25 (1985).
[CrossRef]

A. Penzkofer, W. Blau, Opt. Quantum Electron. 15, 325 (1983).
[CrossRef]

Boothroyd, S. A.

Boyd, R. W.

Byrne, H.

Carter, G. M.

Chrostowski, J.

Eichler, H. E.

H. E. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Frakowiak, M.

M. Frakowiak, H. Walerys, Acta Phys. Polon. 18, 93 (1959).

Günter, P.

H. E. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Hall, D. W.

Horan, P.

Kabelka, V.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, A. V. Masalov, Opt. Commun. 53, 412 (1985).
[CrossRef]

Kelly, J. M.

W. Blau, H. Byrne, J. M. Kelly, Opt. Commun. 56, 25 (1985).
[CrossRef]

Kramer, M. A.

M. A. Kramer, W R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

Masalov, A. V.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, A. V. Masalov, Opt. Commun. 53, 412 (1985).
[CrossRef]

O’Sullivan, M. S.

Penzkofer, A.

A. Penzkofer, W. Blau, Opt. Quantum Electron. 15, 325 (1983).
[CrossRef]

Pohl, D. W.

H. E. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

Silberberg, Y.

Y. Silberberg, I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
[CrossRef]

Tick, P. A.

Tompkin, W R.

M. A. Kramer, W R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

Tompkin, W. R.

Vasil’eva, M. A.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, A. V. Masalov, Opt. Commun. 53, 412 (1985).
[CrossRef]

Vischakas, J.

M. A. Vasil’eva, J. Vischakas, V. Kabelka, A. V. Masalov, Opt. Commun. 53, 412 (1985).
[CrossRef]

Walerys, H.

M. Frakowiak, H. Walerys, Acta Phys. Polon. 18, 93 (1959).

Acta Phys. Polon. (1)

M. Frakowiak, H. Walerys, Acta Phys. Polon. 18, 93 (1959).

Appl. Opt. (1)

J. Opt. Soc. Am. B (3)

Opt. Commun. (3)

Y. Silberberg, I. Bar-Joseph, Opt. Commun. 39, 265 (1981).
[CrossRef]

W. Blau, H. Byrne, J. M. Kelly, Opt. Commun. 56, 25 (1985).
[CrossRef]

M. A. Vasil’eva, J. Vischakas, V. Kabelka, A. V. Masalov, Opt. Commun. 53, 412 (1985).
[CrossRef]

Opt. Quantum Electron. (1)

A. Penzkofer, W. Blau, Opt. Quantum Electron. 15, 325 (1983).
[CrossRef]

Phys. Rev. A (1)

M. A. Kramer, W R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

Other (3)

H. E. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[CrossRef]

R. A. Fischer, ed., Optical Phase Conjugation (Academic, New York, 1983).

C. Flytzanis, J. L. Oudar, eds., Nonlinear Optics: Materials and Devices, Springer Proceedings in Physics 7 (Springer-Verlag, Berlin, 1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Intensity-dependent transmission of the fluorescine-doped boric acid glass. The solid curve is a computer fit of the experimental data using a rate-equation model as described in Ref. 5.

Fig. 2
Fig. 2

Experimental setup for forward DFWM.

Fig. 3
Fig. 3

Intensity dependence of the diffraction efficiency in forward four-wave mixing showing saturation at high intensities. The solid portion depicts a line with slope 2 as predicted by Eq. (2).

Fig. 4
Fig. 4

Wavelength dependence of the nonlinear susceptibility χ(3). The solid line represents a guide to the eye.

Fig. 5
Fig. 5

Diffracted signal intensity as a function of the writing-beam delay in forward four-wave mixing. The solid curve depicts a fit to a squared hyperbolic secant temporal pulse profile, and the dashed curve represents a fit to a Gaussian pulse shape.

Fig. 6
Fig. 6

Temporal decay of the diffracted intensity as measured in the folded boxcars geometry. The solid curve is a computer fit using a laser-pulse duration of 200 ps and a grating decay time of 1.2 ns.

Fig. 7
Fig. 7

(a) Variation of nonlinear susceptibility χ(3) with laser repetition period. (b) Variation of sample fluorescence with laser repetition period. In both plots the solid curve represents a guide to the eye.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

σ ex = σ 0 ln ( T ex / T 0 ) ,
| χ ( 3 ) | = 4 0 c α n 2 λ η 1 / 2 3 π T 1 / 2 ( 1 T ) I 0 ,
κ 2 = 1 + χ .
Δ κ = Δ χ / 2 ( 1 + χ ) 1 / 2 .
P i = 1 2 0 [ χ i j ( 1 ) A j + 3 4 χ i j k l ( 3 ) A j A k A l + ] = 1 2 0 [ χ i j ( 1 ) A j + Δ χ i j A j ] ,
Δ χ i j = 3 4 χ i j k l ( 3 ) A k A l + ,
Δ κ = 3 χ i j k l ( 3 ) A j A l / 8 κ .
I d / I c = η = | π Δ κ d / λ c | 2 .
η = T I d / I c ,
| χ ( 3 ) | = 8 κ λ η 1 / 2 3 π d A k A l .
A k A l = 2 I / 0 c κ ,
| χ ( 3 ) | = 4 0 c κ 2 λ η 1 / 2 3 π d I .
| χ ( 3 ) | = 4 0 c n 2 λ α η 1 / 2 3 π I T 1 / 2 ( 1 T )

Metrics