Abstract

Femtosecond time-resolved impulsive stimulated Raman scattering (ISRS) experiments on optic phonon–polariton modes are discussd. The effects of polariton dispersion and propagation are treated. The results provide guidance of accurate analysis of ISRS data from polar phonons.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6240 (1987).
    [Crossref]
  2. Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6257 (1987).
    [Crossref]
  3. T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, Ferroelectrics 120, 79 (1991).
    [Crossref]
  4. T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond time-resolved spectroscopy of soft modes in structural phase transitions. I. KNbO3orthorhombic phases; II. BaTiO3 tetrahedral phase,” submitted to Phys. Rev. B.
  5. J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Ultrafast Phenomena VII (Springer-Verlag, Berlin1990), p. 340.
    [Crossref]
  6. J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Phys. Rev. B 41, 12362 (1990).
    [Crossref]
  7. Femtosecond time-resolved observation of optic phonons was also carried out with a different mechanism by M. C. Nuss and D. H. Auston, in Ultrafast Phenomena V, G. R. Fleming and A. E. Siegman, eds. (Springer-Verlag, Berlin1986), pp. 284–286;D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).
    [Crossref]
  8. P. C. M. Planken, Ph.D. dissertation (University of Amsterdam, Amsterdam, 1991).
  9. R. Claus, L. Merten, and J. Brandmuller, Light Scattering by Phonon–Polaritons (Springer-Verlag, Berlin, 1975).
  10. G. Lamprecht and L. Merten, Phys. Status Solidi b 55, 33 (1973).
    [Crossref]
  11. A. S. Barker and R. Louden, Rev. Mod. Phys. 44, 18 (1972).
    [Crossref]
  12. E. Burstein, Comm. Solid State Phys. 1, 202 (1968).
  13. E. Burstein and D. L. Mills, Comm. Solid State Phys. 2, 92, 111 (1968).
  14. R. Louden, Light Scattering Spectra of Solids (Springer-Verlag, New York, 1969), p. 25.
    [Crossref]
  15. E. Hanamura, Phys. Rev. B 39, 1152 (1989).
    [Crossref]
  16. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1962).
  17. M. D. Fontana, G. Metrat, J. L. Servoin, and F. Gervais, J. Phys. 16, 483 (1984).
  18. J.-C. Baumert, J. Hoffnagle, and P. Günter, in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger and H. A. Ferwerda, eds., Proc. Soc. Photo-Opt. Instrum. Eng.492, 374–385 (1983).
    [Crossref]
  19. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, London, 1988).
  20. Ref. 11, Eq. (2.58).
  21. S. C. Abrahams and J. L. Bernstein, J. Phys. Chem. Solids 28, 1685 (1967);A. S. Barker and R. Louden, Phys. Rev. 158, 433 (1967);H. D. Megaw, Acta Crystallogr. A 24, 583 (1968).
    [Crossref]
  22. S. C. Abrahams, W. C. Hamilton, and A. Siqueira, J. Phys. Chem. Solids 28, 1693 (1967).
    [Crossref]
  23. I. P. Kaminow and W. D. Johnson, Phys. Rev. 160, 519 (1967).
    [Crossref]
  24. X. Yang, G. Lan, and H. Wang, Phys. Status Solidi b 141, 287 (1987).
    [Crossref]
  25. C. Raptis, Phys. Rev. B 38, 10007 (1988).
    [Crossref]
  26. A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, Phys. Rev. B 13, 4907 (1976).
    [Crossref]
  27. W. L. Bond, J. Appl. Phys. 36, 1674 (1965).From this reference the value of ∊∞= 4.5 can be deduced.
    [Crossref]
  28. G. M. Gale, F. Vallee, and C. Flytzanis, Phys. Rev. Lett. 57, 1867 (1986).
    [Crossref] [PubMed]
  29. F. Vallee, G. M. Gale, and C. Flytzanis, Phys. Rev. Lett. 61, 2102 (1988).
    [Crossref]
  30. V. M. Agranovich and I. I. Lalov, Sov. Phys. Usp. 28, 484 (1985).
    [Crossref]
  31. A. M. Glass and M. E. Lines, Phys. Rev. B 13, 180 (1976).
    [Crossref]

1991 (1)

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, Ferroelectrics 120, 79 (1991).
[Crossref]

1990 (1)

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Phys. Rev. B 41, 12362 (1990).
[Crossref]

1989 (1)

E. Hanamura, Phys. Rev. B 39, 1152 (1989).
[Crossref]

1988 (2)

C. Raptis, Phys. Rev. B 38, 10007 (1988).
[Crossref]

F. Vallee, G. M. Gale, and C. Flytzanis, Phys. Rev. Lett. 61, 2102 (1988).
[Crossref]

1987 (3)

X. Yang, G. Lan, and H. Wang, Phys. Status Solidi b 141, 287 (1987).
[Crossref]

Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6240 (1987).
[Crossref]

Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6257 (1987).
[Crossref]

1986 (1)

G. M. Gale, F. Vallee, and C. Flytzanis, Phys. Rev. Lett. 57, 1867 (1986).
[Crossref] [PubMed]

1985 (1)

V. M. Agranovich and I. I. Lalov, Sov. Phys. Usp. 28, 484 (1985).
[Crossref]

1984 (1)

M. D. Fontana, G. Metrat, J. L. Servoin, and F. Gervais, J. Phys. 16, 483 (1984).

1976 (2)

A. M. Glass and M. E. Lines, Phys. Rev. B 13, 180 (1976).
[Crossref]

A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, Phys. Rev. B 13, 4907 (1976).
[Crossref]

1973 (1)

G. Lamprecht and L. Merten, Phys. Status Solidi b 55, 33 (1973).
[Crossref]

1972 (1)

A. S. Barker and R. Louden, Rev. Mod. Phys. 44, 18 (1972).
[Crossref]

1968 (2)

E. Burstein, Comm. Solid State Phys. 1, 202 (1968).

E. Burstein and D. L. Mills, Comm. Solid State Phys. 2, 92, 111 (1968).

1967 (3)

S. C. Abrahams and J. L. Bernstein, J. Phys. Chem. Solids 28, 1685 (1967);A. S. Barker and R. Louden, Phys. Rev. 158, 433 (1967);H. D. Megaw, Acta Crystallogr. A 24, 583 (1968).
[Crossref]

S. C. Abrahams, W. C. Hamilton, and A. Siqueira, J. Phys. Chem. Solids 28, 1693 (1967).
[Crossref]

I. P. Kaminow and W. D. Johnson, Phys. Rev. 160, 519 (1967).
[Crossref]

1965 (1)

W. L. Bond, J. Appl. Phys. 36, 1674 (1965).From this reference the value of ∊∞= 4.5 can be deduced.
[Crossref]

Abrahams, S. C.

S. C. Abrahams and J. L. Bernstein, J. Phys. Chem. Solids 28, 1685 (1967);A. S. Barker and R. Louden, Phys. Rev. 158, 433 (1967);H. D. Megaw, Acta Crystallogr. A 24, 583 (1968).
[Crossref]

S. C. Abrahams, W. C. Hamilton, and A. Siqueira, J. Phys. Chem. Solids 28, 1693 (1967).
[Crossref]

Agranovich, V. M.

V. M. Agranovich and I. I. Lalov, Sov. Phys. Usp. 28, 484 (1985).
[Crossref]

Andrade, P. da R.

A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, Phys. Rev. B 13, 4907 (1976).
[Crossref]

Antonetti, A.

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Phys. Rev. B 41, 12362 (1990).
[Crossref]

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Ultrafast Phenomena VII (Springer-Verlag, Berlin1990), p. 340.
[Crossref]

Auston, D. H.

Femtosecond time-resolved observation of optic phonons was also carried out with a different mechanism by M. C. Nuss and D. H. Auston, in Ultrafast Phenomena V, G. R. Fleming and A. E. Siegman, eds. (Springer-Verlag, Berlin1986), pp. 284–286;D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).
[Crossref]

Barker, A. S.

A. S. Barker and R. Louden, Rev. Mod. Phys. 44, 18 (1972).
[Crossref]

Baumert, J.-C.

J.-C. Baumert, J. Hoffnagle, and P. Günter, in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger and H. A. Ferwerda, eds., Proc. Soc. Photo-Opt. Instrum. Eng.492, 374–385 (1983).
[Crossref]

Bernstein, J. L.

S. C. Abrahams and J. L. Bernstein, J. Phys. Chem. Solids 28, 1685 (1967);A. S. Barker and R. Louden, Phys. Rev. 158, 433 (1967);H. D. Megaw, Acta Crystallogr. A 24, 583 (1968).
[Crossref]

Bond, W. L.

W. L. Bond, J. Appl. Phys. 36, 1674 (1965).From this reference the value of ∊∞= 4.5 can be deduced.
[Crossref]

Born, M.

M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1962).

Brandmuller, J.

R. Claus, L. Merten, and J. Brandmuller, Light Scattering by Phonon–Polaritons (Springer-Verlag, Berlin, 1975).

Burstein, E.

E. Burstein, Comm. Solid State Phys. 1, 202 (1968).

E. Burstein and D. L. Mills, Comm. Solid State Phys. 2, 92, 111 (1968).

Chaves, A.

A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, Phys. Rev. B 13, 4907 (1976).
[Crossref]

Claus, R.

R. Claus, L. Merten, and J. Brandmuller, Light Scattering by Phonon–Polaritons (Springer-Verlag, Berlin, 1975).

Dougherty, T. P.

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, Ferroelectrics 120, 79 (1991).
[Crossref]

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond time-resolved spectroscopy of soft modes in structural phase transitions. I. KNbO3orthorhombic phases; II. BaTiO3 tetrahedral phase,” submitted to Phys. Rev. B.

Etchepare, J.

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Phys. Rev. B 41, 12362 (1990).
[Crossref]

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Ultrafast Phenomena VII (Springer-Verlag, Berlin1990), p. 340.
[Crossref]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, London, 1988).

Flytzanis, C.

F. Vallee, G. M. Gale, and C. Flytzanis, Phys. Rev. Lett. 61, 2102 (1988).
[Crossref]

G. M. Gale, F. Vallee, and C. Flytzanis, Phys. Rev. Lett. 57, 1867 (1986).
[Crossref] [PubMed]

Fontana, M. D.

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Phys. Rev. B 41, 12362 (1990).
[Crossref]

M. D. Fontana, G. Metrat, J. L. Servoin, and F. Gervais, J. Phys. 16, 483 (1984).

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Ultrafast Phenomena VII (Springer-Verlag, Berlin1990), p. 340.
[Crossref]

Gale, G. M.

F. Vallee, G. M. Gale, and C. Flytzanis, Phys. Rev. Lett. 61, 2102 (1988).
[Crossref]

G. M. Gale, F. Vallee, and C. Flytzanis, Phys. Rev. Lett. 57, 1867 (1986).
[Crossref] [PubMed]

Gervais, F.

M. D. Fontana, G. Metrat, J. L. Servoin, and F. Gervais, J. Phys. 16, 483 (1984).

Glass, A. M.

A. M. Glass and M. E. Lines, Phys. Rev. B 13, 180 (1976).
[Crossref]

Grillon, G.

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Phys. Rev. B 41, 12362 (1990).
[Crossref]

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Ultrafast Phenomena VII (Springer-Verlag, Berlin1990), p. 340.
[Crossref]

Günter, P.

J.-C. Baumert, J. Hoffnagle, and P. Günter, in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger and H. A. Ferwerda, eds., Proc. Soc. Photo-Opt. Instrum. Eng.492, 374–385 (1983).
[Crossref]

Hamilton, W. C.

S. C. Abrahams, W. C. Hamilton, and A. Siqueira, J. Phys. Chem. Solids 28, 1693 (1967).
[Crossref]

Hanamura, E.

E. Hanamura, Phys. Rev. B 39, 1152 (1989).
[Crossref]

Hoffnagle, J.

J.-C. Baumert, J. Hoffnagle, and P. Günter, in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger and H. A. Ferwerda, eds., Proc. Soc. Photo-Opt. Instrum. Eng.492, 374–385 (1983).
[Crossref]

Huang, K.

M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1962).

Johnson, W. D.

I. P. Kaminow and W. D. Johnson, Phys. Rev. 160, 519 (1967).
[Crossref]

Kaminow, I. P.

I. P. Kaminow and W. D. Johnson, Phys. Rev. 160, 519 (1967).
[Crossref]

Kugel, G. E.

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Phys. Rev. B 41, 12362 (1990).
[Crossref]

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Ultrafast Phenomena VII (Springer-Verlag, Berlin1990), p. 340.
[Crossref]

Lalov, I. I.

V. M. Agranovich and I. I. Lalov, Sov. Phys. Usp. 28, 484 (1985).
[Crossref]

Lamprecht, G.

G. Lamprecht and L. Merten, Phys. Status Solidi b 55, 33 (1973).
[Crossref]

Lan, G.

X. Yang, G. Lan, and H. Wang, Phys. Status Solidi b 141, 287 (1987).
[Crossref]

Lines, M. E.

A. M. Glass and M. E. Lines, Phys. Rev. B 13, 180 (1976).
[Crossref]

Louden, R.

A. S. Barker and R. Louden, Rev. Mod. Phys. 44, 18 (1972).
[Crossref]

R. Louden, Light Scattering Spectra of Solids (Springer-Verlag, New York, 1969), p. 25.
[Crossref]

Loulergue, J. C.

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Phys. Rev. B 41, 12362 (1990).
[Crossref]

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Ultrafast Phenomena VII (Springer-Verlag, Berlin1990), p. 340.
[Crossref]

Merten, L.

G. Lamprecht and L. Merten, Phys. Status Solidi b 55, 33 (1973).
[Crossref]

R. Claus, L. Merten, and J. Brandmuller, Light Scattering by Phonon–Polaritons (Springer-Verlag, Berlin, 1975).

Metrat, G.

M. D. Fontana, G. Metrat, J. L. Servoin, and F. Gervais, J. Phys. 16, 483 (1984).

Mills, D. L.

E. Burstein and D. L. Mills, Comm. Solid State Phys. 2, 92, 111 (1968).

Nelson, K. A.

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, Ferroelectrics 120, 79 (1991).
[Crossref]

Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6240 (1987).
[Crossref]

Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6257 (1987).
[Crossref]

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond time-resolved spectroscopy of soft modes in structural phase transitions. I. KNbO3orthorhombic phases; II. BaTiO3 tetrahedral phase,” submitted to Phys. Rev. B.

Nuss, M. C.

Femtosecond time-resolved observation of optic phonons was also carried out with a different mechanism by M. C. Nuss and D. H. Auston, in Ultrafast Phenomena V, G. R. Fleming and A. E. Siegman, eds. (Springer-Verlag, Berlin1986), pp. 284–286;D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).
[Crossref]

Penna, A. F.

A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, Phys. Rev. B 13, 4907 (1976).
[Crossref]

Planken, P. C. M.

P. C. M. Planken, Ph.D. dissertation (University of Amsterdam, Amsterdam, 1991).

Porto, S. P. S.

A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, Phys. Rev. B 13, 4907 (1976).
[Crossref]

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, London, 1988).

Raptis, C.

C. Raptis, Phys. Rev. B 38, 10007 (1988).
[Crossref]

Servoin, J. L.

M. D. Fontana, G. Metrat, J. L. Servoin, and F. Gervais, J. Phys. 16, 483 (1984).

Siqueira, A.

S. C. Abrahams, W. C. Hamilton, and A. Siqueira, J. Phys. Chem. Solids 28, 1693 (1967).
[Crossref]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, London, 1988).

Vallee, F.

F. Vallee, G. M. Gale, and C. Flytzanis, Phys. Rev. Lett. 61, 2102 (1988).
[Crossref]

G. M. Gale, F. Vallee, and C. Flytzanis, Phys. Rev. Lett. 57, 1867 (1986).
[Crossref] [PubMed]

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, London, 1988).

Wang, H.

X. Yang, G. Lan, and H. Wang, Phys. Status Solidi b 141, 287 (1987).
[Crossref]

Wiederrecht, G. P.

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, Ferroelectrics 120, 79 (1991).
[Crossref]

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond time-resolved spectroscopy of soft modes in structural phase transitions. I. KNbO3orthorhombic phases; II. BaTiO3 tetrahedral phase,” submitted to Phys. Rev. B.

Yan, Y.-X.

Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6240 (1987).
[Crossref]

Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6257 (1987).
[Crossref]

Yang, X.

X. Yang, G. Lan, and H. Wang, Phys. Status Solidi b 141, 287 (1987).
[Crossref]

Comm. Solid State Phys. (2)

E. Burstein, Comm. Solid State Phys. 1, 202 (1968).

E. Burstein and D. L. Mills, Comm. Solid State Phys. 2, 92, 111 (1968).

Ferroelectrics (1)

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, Ferroelectrics 120, 79 (1991).
[Crossref]

J. Appl. Phys. (1)

W. L. Bond, J. Appl. Phys. 36, 1674 (1965).From this reference the value of ∊∞= 4.5 can be deduced.
[Crossref]

J. Chem. Phys. (2)

Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6240 (1987).
[Crossref]

Y.-X. Yan and K. A. Nelson, J. Chem. Phys. 87, 6257 (1987).
[Crossref]

J. Phys. (1)

M. D. Fontana, G. Metrat, J. L. Servoin, and F. Gervais, J. Phys. 16, 483 (1984).

J. Phys. Chem. Solids (2)

S. C. Abrahams and J. L. Bernstein, J. Phys. Chem. Solids 28, 1685 (1967);A. S. Barker and R. Louden, Phys. Rev. 158, 433 (1967);H. D. Megaw, Acta Crystallogr. A 24, 583 (1968).
[Crossref]

S. C. Abrahams, W. C. Hamilton, and A. Siqueira, J. Phys. Chem. Solids 28, 1693 (1967).
[Crossref]

Phys. Rev. (1)

I. P. Kaminow and W. D. Johnson, Phys. Rev. 160, 519 (1967).
[Crossref]

Phys. Rev. B (5)

E. Hanamura, Phys. Rev. B 39, 1152 (1989).
[Crossref]

C. Raptis, Phys. Rev. B 38, 10007 (1988).
[Crossref]

A. F. Penna, A. Chaves, P. da R. Andrade, and S. P. S. Porto, Phys. Rev. B 13, 4907 (1976).
[Crossref]

A. M. Glass and M. E. Lines, Phys. Rev. B 13, 180 (1976).
[Crossref]

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Phys. Rev. B 41, 12362 (1990).
[Crossref]

Phys. Rev. Lett. (2)

G. M. Gale, F. Vallee, and C. Flytzanis, Phys. Rev. Lett. 57, 1867 (1986).
[Crossref] [PubMed]

F. Vallee, G. M. Gale, and C. Flytzanis, Phys. Rev. Lett. 61, 2102 (1988).
[Crossref]

Phys. Status Solidi b (2)

X. Yang, G. Lan, and H. Wang, Phys. Status Solidi b 141, 287 (1987).
[Crossref]

G. Lamprecht and L. Merten, Phys. Status Solidi b 55, 33 (1973).
[Crossref]

Rev. Mod. Phys. (1)

A. S. Barker and R. Louden, Rev. Mod. Phys. 44, 18 (1972).
[Crossref]

Sov. Phys. Usp. (1)

V. M. Agranovich and I. I. Lalov, Sov. Phys. Usp. 28, 484 (1985).
[Crossref]

Other (10)

M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1962).

R. Louden, Light Scattering Spectra of Solids (Springer-Verlag, New York, 1969), p. 25.
[Crossref]

J.-C. Baumert, J. Hoffnagle, and P. Günter, in 1984 European Conference on Optics, Optical Systems, and Applications, B. Bolger and H. A. Ferwerda, eds., Proc. Soc. Photo-Opt. Instrum. Eng.492, 374–385 (1983).
[Crossref]

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, London, 1988).

Ref. 11, Eq. (2.58).

Femtosecond time-resolved observation of optic phonons was also carried out with a different mechanism by M. C. Nuss and D. H. Auston, in Ultrafast Phenomena V, G. R. Fleming and A. E. Siegman, eds. (Springer-Verlag, Berlin1986), pp. 284–286;D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).
[Crossref]

P. C. M. Planken, Ph.D. dissertation (University of Amsterdam, Amsterdam, 1991).

R. Claus, L. Merten, and J. Brandmuller, Light Scattering by Phonon–Polaritons (Springer-Verlag, Berlin, 1975).

T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond time-resolved spectroscopy of soft modes in structural phase transitions. I. KNbO3orthorhombic phases; II. BaTiO3 tetrahedral phase,” submitted to Phys. Rev. B.

J. Etchepare, G. Grillon, A. Antonetti, J. C. Loulergue, M. D. Fontana, and G. E. Kugel, Ultrafast Phenomena VII (Springer-Verlag, Berlin1990), p. 340.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Dispersion diagram for a single undamped polar mode. The solid curves represent the wave-vector dependent coupled-mode frequencies. The dashed curves, c′ and c″, represent the propagation of light in the high-k and low-k limits. The curves are generated from Eqs. (9) and (13) with ωT = 10 cm−1, Γ = 0, ωL = 16.25 cm−1, and = 5.

Fig. 2
Fig. 2

Dispersion diagram for two undamped polar modes. The solid curves represent the wave-vector-dependent coupled-mode frequencies. The dashed curves, c′ and c″, represent the propagation of light in the high-k and low-k limits. The curves are generated from Eqs. (19) and (25) with ωT1 = 10 cm−1, ωL1 = 16.25 cm−1, ωT2 = 20 cm−1, ωL2 = 25 cm−1, = 5, and all Γ’s equal to zero.

Fig. 3
Fig. 3

Frequency and damping rate of the lowest-frequency solutions to Eqs. (28) and (23). The following parameters from KNbO3 at 395.1 K (Ref. 3) were used with Eq. (26), ωT1 = 57.8 cm−1, ΓT1 = 61.5 cm−1, ωL1 = 421 cm−1, ΓL1 = 4.5 cm−1, and ′ = 12.47. Equation (23) used the same parameters for the uncoupled lowest-frequency mode and ωT2 = 516 cm−1, ΓT2 = 25 cm−1, ωL2 = 820 cm−1, ΓL2 = 16 cm−1 and = 4.94. Equation (28) is a good approximation to the full model for the lowest-frequency mode in the polariton region.

Fig. 4
Fig. 4

Predicted amplitude K1 and phase ϕ1 [see Eqs. (39) and (40)] of the lowest-frequency B2 symmetry mode of KNbO3 in the polariton region. The model’s values are calculated from ωT1 = 57.8 cm−1, ΓT1 = 61.5 cm−1, ωL1 = 421 cm−1, and ′ = 12.47.

Fig. 5
Fig. 5

Predicted amplitude K1 and phase ϕ1 [see Eqs. (39)(42)] of the lowest-frequency E symmetry mode of BaTiO3 in the polariton region. The mode is overdamped at large k and under-damped at small k. The crossover occurs where K1 diverges. The model’s values are calculated from ωT1 = 36.1 cm−1, ΓT1 = 98.1 cm−1, ωL1 = 710 cm−1, and = 5.22.

Fig. 6
Fig. 6

Predicted maximum amplitude Amax of the response for the two modes shown in Figs. 4 and 5 [see Eqs. (44)(47)]. Notice that the divergence in K1 for BaTiO3 at the crossover from overdamped to underdamped dynamics does not represent a divergence of the response.

Fig. 7
Fig. 7

Wave-vector dependence of the maximum amplitude Amax (a) and phase (b) predicted by the G22 response function [Eq. (32)] and parameters for the B2 soft optic mode in KNbO3. The dependence of Amax predicted by G11 for the same parameters is shown in Fig. 6(a). The dependence of the phase predicted by G11 is shown in Fig. 4(b). In this figure, however, ϕ1 is multiplied by ω1/π to demonstrate that G22 predicts a response more similar to a cosine (phase shift of π/2) than a sine.

Fig. 8
Fig. 8

A1 symmetry scattering in LiTaO3 at room temperature. The y-axis scale is logarithmic. The two experiments were performed at approximately the same wave vector, but (a) was performed with smaller spot sizes. The nonexponential decay is the result of excitation wave-packet propagation in the polariton region.

Fig. 9
Fig. 9

Experiments shown in Fig. 8 repeated with very large (3-mm) spot sizes in the wave-vector direction. At each scattering angle the response is well described by an exponential decay.

Fig. 10
Fig. 10

Wave-vector-dependent frequencies and damping rates are compared with the predictions of Eq. (28); the following parameters are used here: ωT = 206 cm−1, Γ = 26 cm−1, ωL = 402 cm−1, and ′ = 8.5. The agreement for the frequencies is good, but differences between experimental and predicted damping rates are significant.

Equations (69)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) | G ( t ) | 2 .
G ijkl = i j Q k l Q G ( t ) .
G ( t ) exp ( γ 1 t ) sin ( ω 1 t )
G ( t ) [ exp ( λ 1 t ) exp ( λ 2 t ) ]
ω 2 Q = B 11 Q + B 12 E ,
P = B 21 Q + B 22 E ,
E = 4 π ( n 2 1 ) P T 4 π P L ,
n 2 = 1 + 4 π B 22 + 4 π B 12 B 21 B 11 ω 2 .
n 2 = + ω T 2 ( 0 ) ω T 2 ω 2 ,
B 11 = ω T 2 ,
4 π B 12 B 21 = ω T 2 ( 0 ) ,
4 π B 22 = 1 ,
ω 2 = ω L 2 = 0 ω T 2 ,
n 2 = c 2 k 2 ω 2 .
ω 2 Q = ( B 11 + i ω Γ ) Q + B 12 E .
n 2 = + ω T 2 ( 0 ) ω T 2 ω 2 i ω Γ .
ω 4 + ω 3 ( i Γ ) ω 2 c 2 k 2 + ω T 2 0 ω i Γ c 2 k 2 + ω T 2 c 2 k 2 = 0 .
ω 2 = ( c 2 k 2 ) / ,
ω 2 + i ω Γ ω T 2 = 0 .
ω 2 + i ω Γ ω T 2 0 = 0 .
ω 2 = ( c 2 k 2 ) / 0 ,
ω 2 Q 1 = ( ω T 1 2 + i ω Γ T 1 ) Q 1 + B 13 E ,
ω 2 Q 2 = ( ω T 2 2 + i ω Γ T 2 ) Q 2 + B 23 E ,
P = B 31 Q 1 + B 32 Q 2 + 1 4 π E ,
E = 4 π ( n 2 1 ) P T 4 π P L .
n 2 = + A 1 ω T 1 2 i ω Γ T 1 ω 2 + A 2 ω T 2 2 i ω Γ T 2 ω 2 ,
ω 4 + i ω 3 ( Γ T 1 + Γ T 2 ) ω 2 ( ω T 1 2 + ω T 2 2 + Γ T 1 Γ T 2 + A 1 + A 2 ) i ω ( ω T 1 2 Γ T 2 + ω T 2 2 Γ T 1 + A 1 Γ T 2 + A 2 Γ T 1 ) + ω T 1 2 ω T 2 2 + A 1 ω T 2 2 + A 2 ω T 1 2 = 0 .
( ω L 1 2 i ω Γ L 1 ω 2 ) ( ω L 2 2 i ω Γ L 2 ω 2 ) = 0 ,
n 2 = ( ω L 1 2 i ω Γ L 1 ω 2 ) ( ω L 2 2 i ω Γ L 2 ω 2 ) ( ω T 1 2 i ω Γ T 1 ω 2 ) ( ω T 2 2 i ω Γ T 2 ω 2 ) .
n 2 = + j = 1 n A j ω T j 2 i ω Γ T j ω 2 ,
n 2 = j = 1 n ( ω L j 2 i ω Γ L j ω 2 ) ( ω T j 2 i ω Γ T j ω 2 ) .
A j = k = 1 n ( ω L k 2 i ω r j Γ L k ω r j 2 ) k = 1 , k j n ( ω T k 2 i ω r j Γ T k ω 2 ) .
ω r j = i Γ j 2 ± ( ω T j 2 Γ T j 2 / 4 ) 1 / 2 .
= j = 2 n ω L j 2 ω T j 2 .
ω 4 + ω 3 ( i Γ ) ω 2 c 2 k 2 + ω T 2 0 ω i Γ c 2 k 2 + ω T 2 c 2 k 2 = 0 .
[ ω T 1 2 i ω Γ T 1 ω 2 4 π B 12 n 2 1 B 21 n 2 n 2 1 ] ( Q P ) = ( F 1 F 2 ) .
L ( ω ) X ( ω ) = F ( ω ) ,
G ( ω ) = L 1 ( ω ) .
G ( ω ) = [ n 2 ( n 2 1 ) D 4 π B 12 ( n 2 1 ) D B 21 D ω T 1 2 i ω Γ T 1 ω 2 D ] ,
D = ( ω T 1 2 i ω Γ T 1 ω 2 ) ( n 2 n 2 1 ) 4 π B 12 B 21 n 2 1 ,
4 π B 12 B 12 = ω T 1 2 ( 0 ) .
X ( t ) = t d t G ( t t ) F ( t ) .
G 11 ( ω ) = c 2 k 2 ω 2 [ ω 4 + ω 3 ( i Γ ) ω 2 c 2 k 2 + ω T 2 0 ω i Γ c 2 k 2 + ω T 2 c 2 k 2 ] .
G ( ω ) = ω T 2 ( 0 ) [ c 2 k 2 ɛ ω 2 2 ω 2 ( 1 ) Z / z ] + ω 2 ( 1 ) 2 ( ω T 1 2 i ω Γ T 1 ω 2 ) ( Z / z ) 2 [ ω 4 + ω 3 ( i Γ ) ω 2 c 2 k 2 + ω T 2 0 ω i Γ c 2 k 2 + ω T 2 c 2 k 2 ] ,
G 11 ( t ) = i Res { exp ( i ω t ) ( c 2 k 2 ɛ ω 2 ) [ ω ( ω 1 i γ 1 ) ] [ ω ( ω 1 i γ 1 ) ] [ ω ( ω 2 i γ 2 ) ] [ ω ( ω 2 i γ 2 ) ] } .
G 11 ( t ) = 1 ( K 1 { exp ( γ 1 t ) sin [ ω 1 ( t ϕ 1 ) ] } + HF term ) ,
K 1 = 2 [ ( A C + B D ) 2 + ( A D B C ) 2 ] 1 / 2 C 2 + D 2 ,
ϕ 1 = tan 1 ( B C A D A C + B D ) / ω 1 ,
A = c 2 k 2 ( ω 1 2 γ 1 2 ) ,
B = 2 ω 1 γ 1 ,
C = 2 ω 1 [ ω 1 2 ω 2 2 ( γ 1 γ 2 ) 2 ] ,
D = 4 ω 1 2 ( γ 1 γ 2 ) .
G 11 ( t ) = i Res { exp ( i ω t ) ( c 2 k 2 ɛ ω 2 ) ( ω + i λ 1 ) ( ω + i λ 2 ) [ ω ( ω 2 i γ 2 ) ] [ ω ( ω 2 i γ 2 ) ] } .
G 11 ( t ) = 1 ( K 1 { exp [ λ 1 ( t + ϕ 1 ) ] exp [ λ 2 ( t + ϕ 1 ) ] } + HF term ) ,
K 1 = A exp [ λ 1 ln ( A / B ) λ 1 λ 2 ] = B exp [ λ 2 ln ( A / B ) λ 1 λ 2 ]
ϕ 1 = ln ( A / B ) λ 1 λ 2 ,
A = c 2 k 2 + λ 1 2 [ ω 2 2 + ( λ 1 γ 2 ) 2 ] ( λ 1 λ 2 ) ,
B = c 2 k 2 + λ 2 2 [ ω 2 2 + ( λ 2 γ 2 ) 2 ] ( λ 1 λ 2 ) .
A max = K 1 exp [ γ 1 ( z ω 1 + ϕ 1 ) ] sin ( z ) ,
z = arctan ( ω 1 γ 1 ) .
A max = exp ( λ 1 z ) exp ( λ 2 z ) ,
z = ln ( λ 1 / λ 2 ) λ 1 λ 2 .
0 = ( 1 i ω τ ) Q + B 12 E ,
n 2 = + 0 1 i ω τ .
ω 3 + i ω 2 ( 0 τ ) ω ( c 2 k 2 ) i c 2 k 2 τ = 0 .
η ( t ) exp ( 2 γ 1 t ) [ 1 cos ( 2 ω 1 t ) ] .
η ( t ) exp [ α 1 ( υ t ) 2 ] exp ( 2 γ 1 t ) × [ 1 exp ( α 2 ( υ t ) 2 ) cos ( 2 ω 1 t ) ] ,
α 1 = 2 cos 2 β ω p x 2 + ω e x 2 ,
α 2 = 2 cos 2 β ω e x 2 ,

Metrics