J. C. Camparo, P. Lambropoulos, “The stochastic realization shift,” Opt. Commun. 85, 213 (1991).

[CrossRef]

L. R. Brewer, F. Buchinger, M. Ligare, D. E. Kelleher, “Resonance-enhanced multiphoton ionization of atomic hydrogen,” Phys. Rev. A 39, 3912 (1989).

[CrossRef]
[PubMed]

J. C. Camparo, R. P. Frueholz, “Parameters of adiabatic rapid passage in the 0–0 hyperfine transition of 87Rb,” Phys. Rev. A 30, 803 (1984).

[CrossRef]

P. Zoller, “Stark shifts and resonant multiphoton ionisation in multimode laser fields,” J. Phys. B 15, 2911 (1982).

[CrossRef]

A. T. Georges, P. Lambropoulos, “Aspects of resonant multiphoton processes,” Adv. Electron. Electron Phys. 54, 191 (1980), and references therein.

[CrossRef]

N. B. Delone, V. A. Kovarskii, A. V. Massalov, N. F. Perel’man, “An atom in the radiation field of a multifrequency laser,” Sov. Phys. Usp. 23, 472 (1980).

[CrossRef]

P. Zoller, P. Lambropoulos, “Laser temporal coherence effects in two-photon resonant three-photon ionisation,” J. Phys. B 13, 69 (1980).

[CrossRef]

S. Jacobs, “How monochromatic is laser light?” Am. J. Phys. 47, 597 (1979).

[CrossRef]

A. T. Georges, P. Lambropoulos, “Saturation and stark splitting of an atomic transition in a stochastic field,” Phys. Rev. A 20, 991 (1979).

[CrossRef]

Y. Gontier, M. Trahin, “Multiphoton ionisation and light statistics: application to the cesium atom,” J. Phys. B 12, 2123 (1979).

[CrossRef]

P. Zoller, P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field–atom interaction,” J. Phys. B 12, L547 (1979).

[CrossRef]

P. Agostini, A. T. Georges, S. E. Wheatley, P. Lambropoulos, M. D. Levenson, “Saturation effects in resonant three-photon ionisation of sodium with a nonmonochromatic field,” J. Phys. B 11, 1733 (1978).

[CrossRef]

P. W. Milonni, J. H. Eberly, “Temporal coherence in multi-photon absorption. Far off-resonance intermediate states,” J. Chem. Phys. 68, 1602 (1978).

[CrossRef]

A. T. Georges, P. Lambropoulos, J. H. Marburger, “Theory of third-harmonic generation in metal vapors under two-photon resonance conditions,” Phys. Rev. A 15, 300 (1977).

[CrossRef]

J. S. Barkos, “ac Stark effect and multiphoton processes in atoms,” Phys. Rep. 31, 209 (1977).

[CrossRef]

J. Morellec, D. Normand, G. Petite, “Resonance shifts in the multiphoton ionization of cesium atoms,” Phys. Rev. A 14, 300 (1976).

[CrossRef]

C. Lecompte, G. Mainfray, C. Manus, F. Sanchez, “Laser temporal-coherence effects on multiphoton ionization processes,” Phys. Rev. A 11, 1009 (1975).

[CrossRef]

See, for example, G. Busca, M. Tetu, J. Vanier, “Light shift and light broadening in the 87Rb maser,” Can. J. Phys. 13, 1379 (1973);C. H. Volk, R. P. Frueholz, “The role of long-term lamp fluctuations in the random walk of frequency behavior of the rubidium frequency standard: a case study,” J. Appl. Phys. 57, 980 (1985);J. C. Camparo, R. P. Frueholz, “Fundamental stability limits for the diode-laser-pumped atomic frequency standard,” J. Appl. Phys. 59, 3313 (1986).

[CrossRef]

J. H. Ahrens, U. Dieter, “Computer methods for sampling from the exponential and normal distributions,” Commun. Assoc. Comput. Mach. 15, 873 (1972).

B. S. Mathur, H. Tang, W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11 (1968), and references therein.

[CrossRef]

M. D. MacLaren, G. Marsaglia, “Uniform random number generators,” J. Assoc. Comput. Mach. 12, 83 (1965).

[CrossRef]

M. Arditi, T. R. Carver, “Pressure, light, and temperature shifts in optical detection of 0–0 hyperfine resonance of alkali metals,” Phys. Rev. 124, 800 (1961).

[CrossRef]

J. P. Barrat, C. Cohen-Tannoudji, “Elargissement et deplacement des raies de resonance magnetique causes par une excitation optique,” J. Phys. 22, 443 (1961).

M. J. Levin, “Generation of a sampled Gaussian time series having a specified correlation function,” IRE Trans. Inf. Theory IT-6, 545 (1960).

[CrossRef]

J. G. Powles, “The adiabatic fast passage experiment in magnetic resonance,” Proc. Phys. Soc. London 71, 497 (1958).

[CrossRef]

P. Agostini, A. T. Georges, S. E. Wheatley, P. Lambropoulos, M. D. Levenson, “Saturation effects in resonant three-photon ionisation of sodium with a nonmonochromatic field,” J. Phys. B 11, 1733 (1978).

[CrossRef]

J. H. Ahrens, U. Dieter, “Computer methods for sampling from the exponential and normal distributions,” Commun. Assoc. Comput. Mach. 15, 873 (1972).

M. Arditi, T. R. Carver, “Pressure, light, and temperature shifts in optical detection of 0–0 hyperfine resonance of alkali metals,” Phys. Rev. 124, 800 (1961).

[CrossRef]

J. S. Barkos, “ac Stark effect and multiphoton processes in atoms,” Phys. Rep. 31, 209 (1977).

[CrossRef]

J. P. Barrat, C. Cohen-Tannoudji, “Elargissement et deplacement des raies de resonance magnetique causes par une excitation optique,” J. Phys. 22, 443 (1961).

L. R. Brewer, F. Buchinger, M. Ligare, D. E. Kelleher, “Resonance-enhanced multiphoton ionization of atomic hydrogen,” Phys. Rev. A 39, 3912 (1989).

[CrossRef]
[PubMed]

L. R. Brewer, F. Buchinger, M. Ligare, D. E. Kelleher, “Resonance-enhanced multiphoton ionization of atomic hydrogen,” Phys. Rev. A 39, 3912 (1989).

[CrossRef]
[PubMed]

See, for example, G. Busca, M. Tetu, J. Vanier, “Light shift and light broadening in the 87Rb maser,” Can. J. Phys. 13, 1379 (1973);C. H. Volk, R. P. Frueholz, “The role of long-term lamp fluctuations in the random walk of frequency behavior of the rubidium frequency standard: a case study,” J. Appl. Phys. 57, 980 (1985);J. C. Camparo, R. P. Frueholz, “Fundamental stability limits for the diode-laser-pumped atomic frequency standard,” J. Appl. Phys. 59, 3313 (1986).

[CrossRef]

J. C. Camparo, P. Lambropoulos, “The stochastic realization shift,” Opt. Commun. 85, 213 (1991).

[CrossRef]

J. C. Camparo, R. P. Frueholz, “Parameters of adiabatic rapid passage in the 0–0 hyperfine transition of 87Rb,” Phys. Rev. A 30, 803 (1984).

[CrossRef]

J. C. Camparo, P. Lambropoulos, “Monte Carlo simulations of field fluctuations in strongly driven resonant transitions,” submitted to Phys. Rev. A.

M. Arditi, T. R. Carver, “Pressure, light, and temperature shifts in optical detection of 0–0 hyperfine resonance of alkali metals,” Phys. Rev. 124, 800 (1961).

[CrossRef]

J. P. Barrat, C. Cohen-Tannoudji, “Elargissement et deplacement des raies de resonance magnetique causes par une excitation optique,” J. Phys. 22, 443 (1961).

N. B. Delone, V. A. Kovarskii, A. V. Massalov, N. F. Perel’man, “An atom in the radiation field of a multifrequency laser,” Sov. Phys. Usp. 23, 472 (1980).

[CrossRef]

J. H. Ahrens, U. Dieter, “Computer methods for sampling from the exponential and normal distributions,” Commun. Assoc. Comput. Mach. 15, 873 (1972).

P. W. Milonni, J. H. Eberly, “Temporal coherence in multi-photon absorption. Far off-resonance intermediate states,” J. Chem. Phys. 68, 1602 (1978).

[CrossRef]

J. C. Camparo, R. P. Frueholz, “Parameters of adiabatic rapid passage in the 0–0 hyperfine transition of 87Rb,” Phys. Rev. A 30, 803 (1984).

[CrossRef]

A. T. Georges, P. Lambropoulos, “Aspects of resonant multiphoton processes,” Adv. Electron. Electron Phys. 54, 191 (1980), and references therein.

[CrossRef]

A. T. Georges, P. Lambropoulos, “Saturation and stark splitting of an atomic transition in a stochastic field,” Phys. Rev. A 20, 991 (1979).

[CrossRef]

P. Agostini, A. T. Georges, S. E. Wheatley, P. Lambropoulos, M. D. Levenson, “Saturation effects in resonant three-photon ionisation of sodium with a nonmonochromatic field,” J. Phys. B 11, 1733 (1978).

[CrossRef]

A. T. Georges, P. Lambropoulos, J. H. Marburger, “Theory of third-harmonic generation in metal vapors under two-photon resonance conditions,” Phys. Rev. A 15, 300 (1977).

[CrossRef]

Y. Gontier, M. Trahin, “Multiphoton ionisation and light statistics: application to the cesium atom,” J. Phys. B 12, 2123 (1979).

[CrossRef]

B. S. Mathur, H. Tang, W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11 (1968), and references therein.

[CrossRef]

S. Jacobs, “How monochromatic is laser light?” Am. J. Phys. 47, 597 (1979).

[CrossRef]

L. R. Brewer, F. Buchinger, M. Ligare, D. E. Kelleher, “Resonance-enhanced multiphoton ionization of atomic hydrogen,” Phys. Rev. A 39, 3912 (1989).

[CrossRef]
[PubMed]

N. B. Delone, V. A. Kovarskii, A. V. Massalov, N. F. Perel’man, “An atom in the radiation field of a multifrequency laser,” Sov. Phys. Usp. 23, 472 (1980).

[CrossRef]

J. C. Camparo, P. Lambropoulos, “The stochastic realization shift,” Opt. Commun. 85, 213 (1991).

[CrossRef]

A. T. Georges, P. Lambropoulos, “Aspects of resonant multiphoton processes,” Adv. Electron. Electron Phys. 54, 191 (1980), and references therein.

[CrossRef]

P. Zoller, P. Lambropoulos, “Laser temporal coherence effects in two-photon resonant three-photon ionisation,” J. Phys. B 13, 69 (1980).

[CrossRef]

P. Zoller, P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field–atom interaction,” J. Phys. B 12, L547 (1979).

[CrossRef]

A. T. Georges, P. Lambropoulos, “Saturation and stark splitting of an atomic transition in a stochastic field,” Phys. Rev. A 20, 991 (1979).

[CrossRef]

P. Agostini, A. T. Georges, S. E. Wheatley, P. Lambropoulos, M. D. Levenson, “Saturation effects in resonant three-photon ionisation of sodium with a nonmonochromatic field,” J. Phys. B 11, 1733 (1978).

[CrossRef]

A. T. Georges, P. Lambropoulos, J. H. Marburger, “Theory of third-harmonic generation in metal vapors under two-photon resonance conditions,” Phys. Rev. A 15, 300 (1977).

[CrossRef]

J. C. Camparo, P. Lambropoulos, “Monte Carlo simulations of field fluctuations in strongly driven resonant transitions,” submitted to Phys. Rev. A.

C. Lecompte, G. Mainfray, C. Manus, F. Sanchez, “Laser temporal-coherence effects on multiphoton ionization processes,” Phys. Rev. A 11, 1009 (1975).

[CrossRef]

P. Agostini, A. T. Georges, S. E. Wheatley, P. Lambropoulos, M. D. Levenson, “Saturation effects in resonant three-photon ionisation of sodium with a nonmonochromatic field,” J. Phys. B 11, 1733 (1978).

[CrossRef]

M. J. Levin, “Generation of a sampled Gaussian time series having a specified correlation function,” IRE Trans. Inf. Theory IT-6, 545 (1960).

[CrossRef]

L. R. Brewer, F. Buchinger, M. Ligare, D. E. Kelleher, “Resonance-enhanced multiphoton ionization of atomic hydrogen,” Phys. Rev. A 39, 3912 (1989).

[CrossRef]
[PubMed]

L.-A. Lompre, G. Mainfray, C. Manus, J. P. Marinier, “Laser light statistics and bandwidth effects in resonant multiphoton ionisation of caesium atoms at 1.059 μ m,” J. Phys. B14, 4307 (1981).

[CrossRef]

R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1973).

M. D. MacLaren, G. Marsaglia, “Uniform random number generators,” J. Assoc. Comput. Mach. 12, 83 (1965).

[CrossRef]

C. Lecompte, G. Mainfray, C. Manus, F. Sanchez, “Laser temporal-coherence effects on multiphoton ionization processes,” Phys. Rev. A 11, 1009 (1975).

[CrossRef]

L.-A. Lompre, G. Mainfray, C. Manus, J. P. Marinier, “Laser light statistics and bandwidth effects in resonant multiphoton ionisation of caesium atoms at 1.059 μ m,” J. Phys. B14, 4307 (1981).

[CrossRef]

C. Lecompte, G. Mainfray, C. Manus, F. Sanchez, “Laser temporal-coherence effects on multiphoton ionization processes,” Phys. Rev. A 11, 1009 (1975).

[CrossRef]

L.-A. Lompre, G. Mainfray, C. Manus, J. P. Marinier, “Laser light statistics and bandwidth effects in resonant multiphoton ionisation of caesium atoms at 1.059 μ m,” J. Phys. B14, 4307 (1981).

[CrossRef]

A. T. Georges, P. Lambropoulos, J. H. Marburger, “Theory of third-harmonic generation in metal vapors under two-photon resonance conditions,” Phys. Rev. A 15, 300 (1977).

[CrossRef]

L.-A. Lompre, G. Mainfray, C. Manus, J. P. Marinier, “Laser light statistics and bandwidth effects in resonant multiphoton ionisation of caesium atoms at 1.059 μ m,” J. Phys. B14, 4307 (1981).

[CrossRef]

M. D. MacLaren, G. Marsaglia, “Uniform random number generators,” J. Assoc. Comput. Mach. 12, 83 (1965).

[CrossRef]

N. B. Delone, V. A. Kovarskii, A. V. Massalov, N. F. Perel’man, “An atom in the radiation field of a multifrequency laser,” Sov. Phys. Usp. 23, 472 (1980).

[CrossRef]

B. S. Mathur, H. Tang, W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11 (1968), and references therein.

[CrossRef]

See, for example, A. Messiah, Quantum Mechanics (Wiley, New York, 1961), Vol. II;B. Holstein, “The adiabatic propagator,” Am. J. Phys. 57, 714 (1989).

[CrossRef]

P. W. Milonni, J. H. Eberly, “Temporal coherence in multi-photon absorption. Far off-resonance intermediate states,” J. Chem. Phys. 68, 1602 (1978).

[CrossRef]

J. Morellec, D. Normand, G. Petite, “Resonance shifts in the multiphoton ionization of cesium atoms,” Phys. Rev. A 14, 300 (1976).

[CrossRef]

J. Morellec, D. Normand, G. Petite, “Resonance shifts in the multiphoton ionization of cesium atoms,” Phys. Rev. A 14, 300 (1976).

[CrossRef]

A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1984).

N. B. Delone, V. A. Kovarskii, A. V. Massalov, N. F. Perel’man, “An atom in the radiation field of a multifrequency laser,” Sov. Phys. Usp. 23, 472 (1980).

[CrossRef]

J. Morellec, D. Normand, G. Petite, “Resonance shifts in the multiphoton ionization of cesium atoms,” Phys. Rev. A 14, 300 (1976).

[CrossRef]

J. G. Powles, “The adiabatic fast passage experiment in magnetic resonance,” Proc. Phys. Soc. London 71, 497 (1958).

[CrossRef]

C. Lecompte, G. Mainfray, C. Manus, F. Sanchez, “Laser temporal-coherence effects on multiphoton ionization processes,” Phys. Rev. A 11, 1009 (1975).

[CrossRef]

B. S. Mathur, H. Tang, W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11 (1968), and references therein.

[CrossRef]

See, for example, G. Busca, M. Tetu, J. Vanier, “Light shift and light broadening in the 87Rb maser,” Can. J. Phys. 13, 1379 (1973);C. H. Volk, R. P. Frueholz, “The role of long-term lamp fluctuations in the random walk of frequency behavior of the rubidium frequency standard: a case study,” J. Appl. Phys. 57, 980 (1985);J. C. Camparo, R. P. Frueholz, “Fundamental stability limits for the diode-laser-pumped atomic frequency standard,” J. Appl. Phys. 59, 3313 (1986).

[CrossRef]

Y. Gontier, M. Trahin, “Multiphoton ionisation and light statistics: application to the cesium atom,” J. Phys. B 12, 2123 (1979).

[CrossRef]

See, for example, G. Busca, M. Tetu, J. Vanier, “Light shift and light broadening in the 87Rb maser,” Can. J. Phys. 13, 1379 (1973);C. H. Volk, R. P. Frueholz, “The role of long-term lamp fluctuations in the random walk of frequency behavior of the rubidium frequency standard: a case study,” J. Appl. Phys. 57, 980 (1985);J. C. Camparo, R. P. Frueholz, “Fundamental stability limits for the diode-laser-pumped atomic frequency standard,” J. Appl. Phys. 59, 3313 (1986).

[CrossRef]

P. Agostini, A. T. Georges, S. E. Wheatley, P. Lambropoulos, M. D. Levenson, “Saturation effects in resonant three-photon ionisation of sodium with a nonmonochromatic field,” J. Phys. B 11, 1733 (1978).

[CrossRef]

P. Zoller, “Stark shifts and resonant multiphoton ionisation in multimode laser fields,” J. Phys. B 15, 2911 (1982).

[CrossRef]

P. Zoller, P. Lambropoulos, “Laser temporal coherence effects in two-photon resonant three-photon ionisation,” J. Phys. B 13, 69 (1980).

[CrossRef]

P. Zoller, P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field–atom interaction,” J. Phys. B 12, L547 (1979).

[CrossRef]

A. T. Georges, P. Lambropoulos, “Aspects of resonant multiphoton processes,” Adv. Electron. Electron Phys. 54, 191 (1980), and references therein.

[CrossRef]

S. Jacobs, “How monochromatic is laser light?” Am. J. Phys. 47, 597 (1979).

[CrossRef]

See, for example, G. Busca, M. Tetu, J. Vanier, “Light shift and light broadening in the 87Rb maser,” Can. J. Phys. 13, 1379 (1973);C. H. Volk, R. P. Frueholz, “The role of long-term lamp fluctuations in the random walk of frequency behavior of the rubidium frequency standard: a case study,” J. Appl. Phys. 57, 980 (1985);J. C. Camparo, R. P. Frueholz, “Fundamental stability limits for the diode-laser-pumped atomic frequency standard,” J. Appl. Phys. 59, 3313 (1986).

[CrossRef]

J. H. Ahrens, U. Dieter, “Computer methods for sampling from the exponential and normal distributions,” Commun. Assoc. Comput. Mach. 15, 873 (1972).

M. J. Levin, “Generation of a sampled Gaussian time series having a specified correlation function,” IRE Trans. Inf. Theory IT-6, 545 (1960).

[CrossRef]

M. D. MacLaren, G. Marsaglia, “Uniform random number generators,” J. Assoc. Comput. Mach. 12, 83 (1965).

[CrossRef]

P. W. Milonni, J. H. Eberly, “Temporal coherence in multi-photon absorption. Far off-resonance intermediate states,” J. Chem. Phys. 68, 1602 (1978).

[CrossRef]

J. P. Barrat, C. Cohen-Tannoudji, “Elargissement et deplacement des raies de resonance magnetique causes par une excitation optique,” J. Phys. 22, 443 (1961).

P. Zoller, “Stark shifts and resonant multiphoton ionisation in multimode laser fields,” J. Phys. B 15, 2911 (1982).

[CrossRef]

Y. Gontier, M. Trahin, “Multiphoton ionisation and light statistics: application to the cesium atom,” J. Phys. B 12, 2123 (1979).

[CrossRef]

P. Agostini, A. T. Georges, S. E. Wheatley, P. Lambropoulos, M. D. Levenson, “Saturation effects in resonant three-photon ionisation of sodium with a nonmonochromatic field,” J. Phys. B 11, 1733 (1978).

[CrossRef]

P. Zoller, P. Lambropoulos, “Laser temporal coherence effects in two-photon resonant three-photon ionisation,” J. Phys. B 13, 69 (1980).

[CrossRef]

P. Zoller, P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field–atom interaction,” J. Phys. B 12, L547 (1979).

[CrossRef]

J. C. Camparo, P. Lambropoulos, “The stochastic realization shift,” Opt. Commun. 85, 213 (1991).

[CrossRef]

J. S. Barkos, “ac Stark effect and multiphoton processes in atoms,” Phys. Rep. 31, 209 (1977).

[CrossRef]

B. S. Mathur, H. Tang, W. Happer, “Light shifts in the alkali atoms,” Phys. Rev. 171, 11 (1968), and references therein.

[CrossRef]

M. Arditi, T. R. Carver, “Pressure, light, and temperature shifts in optical detection of 0–0 hyperfine resonance of alkali metals,” Phys. Rev. 124, 800 (1961).

[CrossRef]

J. Morellec, D. Normand, G. Petite, “Resonance shifts in the multiphoton ionization of cesium atoms,” Phys. Rev. A 14, 300 (1976).

[CrossRef]

L. R. Brewer, F. Buchinger, M. Ligare, D. E. Kelleher, “Resonance-enhanced multiphoton ionization of atomic hydrogen,” Phys. Rev. A 39, 3912 (1989).

[CrossRef]
[PubMed]

C. Lecompte, G. Mainfray, C. Manus, F. Sanchez, “Laser temporal-coherence effects on multiphoton ionization processes,” Phys. Rev. A 11, 1009 (1975).

[CrossRef]

A. T. Georges, P. Lambropoulos, J. H. Marburger, “Theory of third-harmonic generation in metal vapors under two-photon resonance conditions,” Phys. Rev. A 15, 300 (1977).

[CrossRef]

A. T. Georges, P. Lambropoulos, “Saturation and stark splitting of an atomic transition in a stochastic field,” Phys. Rev. A 20, 991 (1979).

[CrossRef]

J. C. Camparo, R. P. Frueholz, “Parameters of adiabatic rapid passage in the 0–0 hyperfine transition of 87Rb,” Phys. Rev. A 30, 803 (1984).

[CrossRef]

J. G. Powles, “The adiabatic fast passage experiment in magnetic resonance,” Proc. Phys. Soc. London 71, 497 (1958).

[CrossRef]

N. B. Delone, V. A. Kovarskii, A. V. Massalov, N. F. Perel’man, “An atom in the radiation field of a multifrequency laser,” Sov. Phys. Usp. 23, 472 (1980).

[CrossRef]

R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1973).

L.-A. Lompre, G. Mainfray, C. Manus, J. P. Marinier, “Laser light statistics and bandwidth effects in resonant multiphoton ionisation of caesium atoms at 1.059 μ m,” J. Phys. B14, 4307 (1981).

[CrossRef]

Most high-power pulsed lasers operate in many modes, and it is known that in the limit of many modes a multimode field becomes a chaotic field. On a more pragmatic level, a chaotic field’s nth-order coherence function may be written in terms of products of first-order coherence functions, which aids in the analytical evaluation of atomic averages.

J. C. Camparo, P. Lambropoulos, “Monte Carlo simulations of field fluctuations in strongly driven resonant transitions,” submitted to Phys. Rev. A.

A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1984).

In the Monte Carlo simulations of the present study a random change in the field’s amplitude and frequency was made every 0.01 time units, and in the time between random changes the field characteristics were stable. If the time scale for some process was shorter than 0.01 time units, then for that process the field would have had monochromatic character. It might therefore be argued that with ω1= 56 and ω1= 100 and with random changes occurring every 0.01 time units, we were not simulating the stochastic field accurately enough for our simulation to be sensitive to the field’s degree of photon bunching. However, if this systematic effect were the explanation for the Stark shift enhancement’s ciritical |g2(0)| value, then there should have also been a critical |g2(0)| value for amplitude enhancement. Because this was not the case, it seems unlikely that a systematic effect of our Monte Carlo simulation can be the cause of the Stark shift enhancement’s critical |g2(0)| value.

Actually, this procedure is repeated twice: once for a positive value of κ and once for a negative value of κ. These two ac Stark shifts are then averaged in order to account for the stochastic realization shift, as discussed in Ref. 28.

See, for example, A. Messiah, Quantum Mechanics (Wiley, New York, 1961), Vol. II;B. Holstein, “The adiabatic propagator,” Am. J. Phys. 57, 714 (1989).

[CrossRef]