Abstract

Tunable radiation between 130.6 and 121.5 nm has been generated with a frequency-doubled dye laser, the wavelength of which has been shifted by stimulated Raman scattering in molecular hydrogen. With the eighth and ninth anti-Stokes Raman lines (energies > 0.1 μJ, pulse length < 2 ns), the densities of atomic oxygen and hydrogen, produced by dissociation of O2 or H2 on a hot tungsten wire or in sputtering devices, have been measured by resonance fluorescence at λ = 130.2 nm and at λ = 121.5 nm, respectively. The detection limit in our experimental setup has been estimated near 107/cm3. The corresponding spectral profiles have been determined with a resolution of at best 0.1 cm−1. With a Raman cell cooled in liquid nitrogen, the shift and broadening of the 8th anti-Stokes line have been measured as a function of the hydrogen pressure between 300 and 1000 mbars, through the apparent profile of the O i line.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bogen, E. Hintz, “Plasma edge diagnostics using optical methods,” in Physics of Plasma-Wall Interactions in Controlled Fusion, D. E. Post, R. Bechrisch eds., NATO ASI Series B131, 211–280 (1986).
    [CrossRef]
  2. H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111 & 112, 732–737 (1982).
    [CrossRef]
  3. A. Jörg, U. Meier, K. Kohse-Höinghaus, “Rotational energy transfer in OH (A2Σ+, υ′= 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
    [CrossRef]
  4. G. Hilber, A. Lago, R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4, 1753–1764 (1987).
    [CrossRef]
  5. Ph. Mertens, P. Bogen, “Densities and velocity distributions of atomic hydrogen and carbon, measured by laser-induced fluorescence with frequency-tripling into the vacuum UV,” Appl. Phys. A 43, 197–204 (1987).
    [CrossRef]
  6. H. Wallmeier, H. Zacharias, “Continuously tunable VUV radiation(129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
    [CrossRef]
  7. R. Mahon, Th. J. McIlrath, V. P. Myerscough, D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
    [CrossRef]
  8. A. Goehlich, M. Röwekamp, H. F. Döbele, “VUV fluorescence diagnostics of sputtered oxygen and carbide materials,” J. Nucl. Mater. 176 & 177, 1055–1058 (1990).
    [CrossRef]
  9. H. F. Döbele, M. Röwekamp, B. Rückle, “Amplification of 193 nm radiation in argon fluoride and generation of tunable VUV radiation by high-order anti-Stokes Raman scattering,” IEEE J. Quantum Electron. 20, 1284–1287 (1984).
    [CrossRef]
  10. H. F. Döbele, M. Hörl, M. Röwekamp, B. Reimann, “Detection of atomic oxygen by laser-induced fluorescence spectroscopy at 130 nm,” Appl. Phys. B 39, 91–95 (1986).
    [CrossRef]
  11. K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
    [CrossRef]
  12. D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer Verlag, Berlin, 1979).
    [CrossRef]
  13. J. C. White, “Stimulated Raman scattering,” in Tunable Lasers, L. F. Mollenauer, J. C. White, eds., Vol. 59 of Topics in Applied Physics (Springer-Verlag, Berlin, 1987).
    [CrossRef]
  14. E. Pasch, P. Bogen, Ph. Mertens, “Sputtering of carbonized materials by 1 keV Ar-ions,” J. Nucl. Mater. 176 & 177, 455–460 (1990).
    [CrossRef]
  15. Lambda Physik (D-W3400, Göttingen, Germany), type FL2002.
  16. EG&G (Princeton, N. J.), Boxcar system 4400.
  17. R. L. Kurucz, “The fourth positive system of carbon monoxide,” Spec. Rep. 374 (Smithsonian Astrophysical Observatory, Cambridge, Mass., 1976).
  18. A. Unsöld, Physik der Sternatmosphären, mit besonderer Berücksichtigung der Sonne-zweite Auflage (Physics of the Stellar Atmospheres) (Springer-Verlag, Berlin, 1955), pp. 272–289;J. Richter, “Radiation of hot gases,” in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (North-Holland, Amsterdam, 1968), pp. 1–65.
  19. W. L. Glab, J. P. Hessler, “Frequency shift and asymmetric line shape of the fourth anti-Stokes component from a hydrogen Raman shifter,” Appl. Opt. 27, 5123–5126 (1988),
    [CrossRef] [PubMed]
  20. W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
    [CrossRef] [PubMed]
  21. B. R. Lewis, S. T. Gibson, K. G. H. Baldwin, J. H. Carver, “Vacuum-ultraviolet absorption linewidth measurement using high-order and anti-Stokes Raman-shifted radiation,” J. Opt. Soc. Am. B 6, 1200–1208 (1989).
    [CrossRef]
  22. P. Bogen, Ph. Mertens, E. Pasch, “Verhalten von borhaltigen amorphen Kohlenstoffschichten unter Beschuß mit 1 keV Argonionen” (“Behavior of boron-doped, amorphous carbon films under bombardment by 1 keV argon ions”), Verh. Dtsch. Phys. Ges. 26, 372 (1991).
  23. M. W. Thompson, “The energy spectrum of ejected atoms during the high-energy sputtering of gold,” Philos. Mag. 18, 377–414 (1968).
    [CrossRef]
  24. Ph. Mertens, “Nachweis von atomarem Wasserstoff und Kohlenstoff im vakuum-ultravioletten Spektralbereich mit einem frequenzverdreifachten laser” (“Detection of atomic hydrogen and carbon in the VUV spectral range with a frequency-tripled laser”), Ber. Forsch. Jülich 2254, 1–82 (1987).
  25. Ph. Mertens, P. Bogen, “Velocity distribution of hydrogen atoms sputtered from metal hydrides,” J. Nucl. Mater. 128 & 129, 551–554 (1984).
    [CrossRef]

1991 (1)

P. Bogen, Ph. Mertens, E. Pasch, “Verhalten von borhaltigen amorphen Kohlenstoffschichten unter Beschuß mit 1 keV Argonionen” (“Behavior of boron-doped, amorphous carbon films under bombardment by 1 keV argon ions”), Verh. Dtsch. Phys. Ges. 26, 372 (1991).

1990 (3)

A. Jörg, U. Meier, K. Kohse-Höinghaus, “Rotational energy transfer in OH (A2Σ+, υ′= 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

A. Goehlich, M. Röwekamp, H. F. Döbele, “VUV fluorescence diagnostics of sputtered oxygen and carbide materials,” J. Nucl. Mater. 176 & 177, 1055–1058 (1990).
[CrossRef]

E. Pasch, P. Bogen, Ph. Mertens, “Sputtering of carbonized materials by 1 keV Ar-ions,” J. Nucl. Mater. 176 & 177, 455–460 (1990).
[CrossRef]

1989 (1)

1988 (2)

W. L. Glab, J. P. Hessler, “Frequency shift and asymmetric line shape of the fourth anti-Stokes component from a hydrogen Raman shifter,” Appl. Opt. 27, 5123–5126 (1988),
[CrossRef] [PubMed]

H. Wallmeier, H. Zacharias, “Continuously tunable VUV radiation(129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
[CrossRef]

1987 (3)

Ph. Mertens, “Nachweis von atomarem Wasserstoff und Kohlenstoff im vakuum-ultravioletten Spektralbereich mit einem frequenzverdreifachten laser” (“Detection of atomic hydrogen and carbon in the VUV spectral range with a frequency-tripled laser”), Ber. Forsch. Jülich 2254, 1–82 (1987).

Ph. Mertens, P. Bogen, “Densities and velocity distributions of atomic hydrogen and carbon, measured by laser-induced fluorescence with frequency-tripling into the vacuum UV,” Appl. Phys. A 43, 197–204 (1987).
[CrossRef]

G. Hilber, A. Lago, R. Wallenstein, “Broadly tunable vacuum-ultraviolet/extreme-ultraviolet radiation generated by resonant third-order frequency conversion in krypton,” J. Opt. Soc. Am. B 4, 1753–1764 (1987).
[CrossRef]

1986 (2)

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[CrossRef] [PubMed]

H. F. Döbele, M. Hörl, M. Röwekamp, B. Reimann, “Detection of atomic oxygen by laser-induced fluorescence spectroscopy at 130 nm,” Appl. Phys. B 39, 91–95 (1986).
[CrossRef]

1985 (1)

K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
[CrossRef]

1984 (2)

H. F. Döbele, M. Röwekamp, B. Rückle, “Amplification of 193 nm radiation in argon fluoride and generation of tunable VUV radiation by high-order anti-Stokes Raman scattering,” IEEE J. Quantum Electron. 20, 1284–1287 (1984).
[CrossRef]

Ph. Mertens, P. Bogen, “Velocity distribution of hydrogen atoms sputtered from metal hydrides,” J. Nucl. Mater. 128 & 129, 551–554 (1984).
[CrossRef]

1982 (1)

H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111 & 112, 732–737 (1982).
[CrossRef]

1979 (1)

R. Mahon, Th. J. McIlrath, V. P. Myerscough, D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
[CrossRef]

1968 (1)

M. W. Thompson, “The energy spectrum of ejected atoms during the high-energy sputtering of gold,” Philos. Mag. 18, 377–414 (1968).
[CrossRef]

Baldwin, K. G. H.

B. R. Lewis, S. T. Gibson, K. G. H. Baldwin, J. H. Carver, “Vacuum-ultraviolet absorption linewidth measurement using high-order and anti-Stokes Raman-shifted radiation,” J. Opt. Soc. Am. B 6, 1200–1208 (1989).
[CrossRef]

K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
[CrossRef]

Bay, H. L.

H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111 & 112, 732–737 (1982).
[CrossRef]

Bischel, W. K.

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[CrossRef] [PubMed]

Bogen, P.

P. Bogen, Ph. Mertens, E. Pasch, “Verhalten von borhaltigen amorphen Kohlenstoffschichten unter Beschuß mit 1 keV Argonionen” (“Behavior of boron-doped, amorphous carbon films under bombardment by 1 keV argon ions”), Verh. Dtsch. Phys. Ges. 26, 372 (1991).

E. Pasch, P. Bogen, Ph. Mertens, “Sputtering of carbonized materials by 1 keV Ar-ions,” J. Nucl. Mater. 176 & 177, 455–460 (1990).
[CrossRef]

Ph. Mertens, P. Bogen, “Densities and velocity distributions of atomic hydrogen and carbon, measured by laser-induced fluorescence with frequency-tripling into the vacuum UV,” Appl. Phys. A 43, 197–204 (1987).
[CrossRef]

Ph. Mertens, P. Bogen, “Velocity distribution of hydrogen atoms sputtered from metal hydrides,” J. Nucl. Mater. 128 & 129, 551–554 (1984).
[CrossRef]

H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111 & 112, 732–737 (1982).
[CrossRef]

P. Bogen, E. Hintz, “Plasma edge diagnostics using optical methods,” in Physics of Plasma-Wall Interactions in Controlled Fusion, D. E. Post, R. Bechrisch eds., NATO ASI Series B131, 211–280 (1986).
[CrossRef]

Burgess, D. D.

K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
[CrossRef]

Carver, J. H.

Cotter, D.

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer Verlag, Berlin, 1979).
[CrossRef]

Döbele, H. F.

A. Goehlich, M. Röwekamp, H. F. Döbele, “VUV fluorescence diagnostics of sputtered oxygen and carbide materials,” J. Nucl. Mater. 176 & 177, 1055–1058 (1990).
[CrossRef]

H. F. Döbele, M. Hörl, M. Röwekamp, B. Reimann, “Detection of atomic oxygen by laser-induced fluorescence spectroscopy at 130 nm,” Appl. Phys. B 39, 91–95 (1986).
[CrossRef]

H. F. Döbele, M. Röwekamp, B. Rückle, “Amplification of 193 nm radiation in argon fluoride and generation of tunable VUV radiation by high-order anti-Stokes Raman scattering,” IEEE J. Quantum Electron. 20, 1284–1287 (1984).
[CrossRef]

Dyer, M. J.

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[CrossRef] [PubMed]

Gibson, S. T.

Glab, W. L.

Goehlich, A.

A. Goehlich, M. Röwekamp, H. F. Döbele, “VUV fluorescence diagnostics of sputtered oxygen and carbide materials,” J. Nucl. Mater. 176 & 177, 1055–1058 (1990).
[CrossRef]

Gower, M. C.

K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
[CrossRef]

Hanna, D. C.

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer Verlag, Berlin, 1979).
[CrossRef]

Hessler, J. P.

Hilber, G.

Hintz, E.

H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111 & 112, 732–737 (1982).
[CrossRef]

P. Bogen, E. Hintz, “Plasma edge diagnostics using optical methods,” in Physics of Plasma-Wall Interactions in Controlled Fusion, D. E. Post, R. Bechrisch eds., NATO ASI Series B131, 211–280 (1986).
[CrossRef]

Hörl, M.

H. F. Döbele, M. Hörl, M. Röwekamp, B. Reimann, “Detection of atomic oxygen by laser-induced fluorescence spectroscopy at 130 nm,” Appl. Phys. B 39, 91–95 (1986).
[CrossRef]

Jörg, A.

A. Jörg, U. Meier, K. Kohse-Höinghaus, “Rotational energy transfer in OH (A2Σ+, υ′= 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

Kohse-Höinghaus, K.

A. Jörg, U. Meier, K. Kohse-Höinghaus, “Rotational energy transfer in OH (A2Σ+, υ′= 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

Koopman, D. W.

R. Mahon, Th. J. McIlrath, V. P. Myerscough, D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
[CrossRef]

Kurucz, R. L.

R. L. Kurucz, “The fourth positive system of carbon monoxide,” Spec. Rep. 374 (Smithsonian Astrophysical Observatory, Cambridge, Mass., 1976).

Lago, A.

Lewis, B. R.

Mahon, R.

R. Mahon, Th. J. McIlrath, V. P. Myerscough, D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
[CrossRef]

Marangos, J. P.

K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
[CrossRef]

McIlrath, Th. J.

R. Mahon, Th. J. McIlrath, V. P. Myerscough, D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
[CrossRef]

Meier, U.

A. Jörg, U. Meier, K. Kohse-Höinghaus, “Rotational energy transfer in OH (A2Σ+, υ′= 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

Mertens, Ph.

P. Bogen, Ph. Mertens, E. Pasch, “Verhalten von borhaltigen amorphen Kohlenstoffschichten unter Beschuß mit 1 keV Argonionen” (“Behavior of boron-doped, amorphous carbon films under bombardment by 1 keV argon ions”), Verh. Dtsch. Phys. Ges. 26, 372 (1991).

E. Pasch, P. Bogen, Ph. Mertens, “Sputtering of carbonized materials by 1 keV Ar-ions,” J. Nucl. Mater. 176 & 177, 455–460 (1990).
[CrossRef]

Ph. Mertens, “Nachweis von atomarem Wasserstoff und Kohlenstoff im vakuum-ultravioletten Spektralbereich mit einem frequenzverdreifachten laser” (“Detection of atomic hydrogen and carbon in the VUV spectral range with a frequency-tripled laser”), Ber. Forsch. Jülich 2254, 1–82 (1987).

Ph. Mertens, P. Bogen, “Densities and velocity distributions of atomic hydrogen and carbon, measured by laser-induced fluorescence with frequency-tripling into the vacuum UV,” Appl. Phys. A 43, 197–204 (1987).
[CrossRef]

Ph. Mertens, P. Bogen, “Velocity distribution of hydrogen atoms sputtered from metal hydrides,” J. Nucl. Mater. 128 & 129, 551–554 (1984).
[CrossRef]

Myerscough, V. P.

R. Mahon, Th. J. McIlrath, V. P. Myerscough, D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
[CrossRef]

Pasch, E.

P. Bogen, Ph. Mertens, E. Pasch, “Verhalten von borhaltigen amorphen Kohlenstoffschichten unter Beschuß mit 1 keV Argonionen” (“Behavior of boron-doped, amorphous carbon films under bombardment by 1 keV argon ions”), Verh. Dtsch. Phys. Ges. 26, 372 (1991).

E. Pasch, P. Bogen, Ph. Mertens, “Sputtering of carbonized materials by 1 keV Ar-ions,” J. Nucl. Mater. 176 & 177, 455–460 (1990).
[CrossRef]

Reimann, B.

H. F. Döbele, M. Hörl, M. Röwekamp, B. Reimann, “Detection of atomic oxygen by laser-induced fluorescence spectroscopy at 130 nm,” Appl. Phys. B 39, 91–95 (1986).
[CrossRef]

Röwekamp, M.

A. Goehlich, M. Röwekamp, H. F. Döbele, “VUV fluorescence diagnostics of sputtered oxygen and carbide materials,” J. Nucl. Mater. 176 & 177, 1055–1058 (1990).
[CrossRef]

H. F. Döbele, M. Hörl, M. Röwekamp, B. Reimann, “Detection of atomic oxygen by laser-induced fluorescence spectroscopy at 130 nm,” Appl. Phys. B 39, 91–95 (1986).
[CrossRef]

H. F. Döbele, M. Röwekamp, B. Rückle, “Amplification of 193 nm radiation in argon fluoride and generation of tunable VUV radiation by high-order anti-Stokes Raman scattering,” IEEE J. Quantum Electron. 20, 1284–1287 (1984).
[CrossRef]

Rückle, B.

H. F. Döbele, M. Röwekamp, B. Rückle, “Amplification of 193 nm radiation in argon fluoride and generation of tunable VUV radiation by high-order anti-Stokes Raman scattering,” IEEE J. Quantum Electron. 20, 1284–1287 (1984).
[CrossRef]

Schweer, B.

H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111 & 112, 732–737 (1982).
[CrossRef]

Thompson, M. W.

M. W. Thompson, “The energy spectrum of ejected atoms during the high-energy sputtering of gold,” Philos. Mag. 18, 377–414 (1968).
[CrossRef]

Unsöld, A.

A. Unsöld, Physik der Sternatmosphären, mit besonderer Berücksichtigung der Sonne-zweite Auflage (Physics of the Stellar Atmospheres) (Springer-Verlag, Berlin, 1955), pp. 272–289;J. Richter, “Radiation of hot gases,” in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (North-Holland, Amsterdam, 1968), pp. 1–65.

Wallenstein, R.

Wallmeier, H.

H. Wallmeier, H. Zacharias, “Continuously tunable VUV radiation(129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
[CrossRef]

White, J. C.

J. C. White, “Stimulated Raman scattering,” in Tunable Lasers, L. F. Mollenauer, J. C. White, eds., Vol. 59 of Topics in Applied Physics (Springer-Verlag, Berlin, 1987).
[CrossRef]

Yuratich, M. A.

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer Verlag, Berlin, 1979).
[CrossRef]

Zacharias, H.

H. Wallmeier, H. Zacharias, “Continuously tunable VUV radiation(129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

Ph. Mertens, P. Bogen, “Densities and velocity distributions of atomic hydrogen and carbon, measured by laser-induced fluorescence with frequency-tripling into the vacuum UV,” Appl. Phys. A 43, 197–204 (1987).
[CrossRef]

Appl. Phys. B (2)

H. Wallmeier, H. Zacharias, “Continuously tunable VUV radiation(129–210 nm) by anti-Stokes Raman scattering in cooled H2,” Appl. Phys. B 45, 263–272 (1988).
[CrossRef]

H. F. Döbele, M. Hörl, M. Röwekamp, B. Reimann, “Detection of atomic oxygen by laser-induced fluorescence spectroscopy at 130 nm,” Appl. Phys. B 39, 91–95 (1986).
[CrossRef]

Ber. Forsch. Jülich (1)

Ph. Mertens, “Nachweis von atomarem Wasserstoff und Kohlenstoff im vakuum-ultravioletten Spektralbereich mit einem frequenzverdreifachten laser” (“Detection of atomic hydrogen and carbon in the VUV spectral range with a frequency-tripled laser”), Ber. Forsch. Jülich 2254, 1–82 (1987).

IEEE J. Quantum Electron. (2)

R. Mahon, Th. J. McIlrath, V. P. Myerscough, D. W. Koopman, “Third-harmonic generation in argon, krypton, and xenon: bandwidth limitations in the vicinity of Lyman-α,” IEEE J. Quantum Electron. 15, 444–451 (1979).
[CrossRef]

H. F. Döbele, M. Röwekamp, B. Rückle, “Amplification of 193 nm radiation in argon fluoride and generation of tunable VUV radiation by high-order anti-Stokes Raman scattering,” IEEE J. Quantum Electron. 20, 1284–1287 (1984).
[CrossRef]

J. Chem. Phys. (1)

A. Jörg, U. Meier, K. Kohse-Höinghaus, “Rotational energy transfer in OH (A2Σ+, υ′= 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

J. Nucl. Mater. (4)

H. L. Bay, B. Schweer, P. Bogen, E. Hintz, “Investigation of light-ion sputtering of titanium using laser-induced fluorescence,” J. Nucl. Mater. 111 & 112, 732–737 (1982).
[CrossRef]

E. Pasch, P. Bogen, Ph. Mertens, “Sputtering of carbonized materials by 1 keV Ar-ions,” J. Nucl. Mater. 176 & 177, 455–460 (1990).
[CrossRef]

A. Goehlich, M. Röwekamp, H. F. Döbele, “VUV fluorescence diagnostics of sputtered oxygen and carbide materials,” J. Nucl. Mater. 176 & 177, 1055–1058 (1990).
[CrossRef]

Ph. Mertens, P. Bogen, “Velocity distribution of hydrogen atoms sputtered from metal hydrides,” J. Nucl. Mater. 128 & 129, 551–554 (1984).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

K. G. H. Baldwin, J. P. Marangos, D. D. Burgess, M. C. Gower, “Generation of tunable coherent VUV radiation by anti-Stokes Raman scattering of excimer-pumped dye laser radiation,” Opt. Commun. 52, 351–354 (1985).
[CrossRef]

Philos. Mag. (1)

M. W. Thompson, “The energy spectrum of ejected atoms during the high-energy sputtering of gold,” Philos. Mag. 18, 377–414 (1968).
[CrossRef]

Phys. Rev. A (1)

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[CrossRef] [PubMed]

Verh. Dtsch. Phys. Ges. (1)

P. Bogen, Ph. Mertens, E. Pasch, “Verhalten von borhaltigen amorphen Kohlenstoffschichten unter Beschuß mit 1 keV Argonionen” (“Behavior of boron-doped, amorphous carbon films under bombardment by 1 keV argon ions”), Verh. Dtsch. Phys. Ges. 26, 372 (1991).

Other (7)

Lambda Physik (D-W3400, Göttingen, Germany), type FL2002.

EG&G (Princeton, N. J.), Boxcar system 4400.

R. L. Kurucz, “The fourth positive system of carbon monoxide,” Spec. Rep. 374 (Smithsonian Astrophysical Observatory, Cambridge, Mass., 1976).

A. Unsöld, Physik der Sternatmosphären, mit besonderer Berücksichtigung der Sonne-zweite Auflage (Physics of the Stellar Atmospheres) (Springer-Verlag, Berlin, 1955), pp. 272–289;J. Richter, “Radiation of hot gases,” in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (North-Holland, Amsterdam, 1968), pp. 1–65.

P. Bogen, E. Hintz, “Plasma edge diagnostics using optical methods,” in Physics of Plasma-Wall Interactions in Controlled Fusion, D. E. Post, R. Bechrisch eds., NATO ASI Series B131, 211–280 (1986).
[CrossRef]

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer Verlag, Berlin, 1979).
[CrossRef]

J. C. White, “Stimulated Raman scattering,” in Tunable Lasers, L. F. Mollenauer, J. C. White, eds., Vol. 59 of Topics in Applied Physics (Springer-Verlag, Berlin, 1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental arrangement.

Fig. 2
Fig. 2

Section of the fluorescence spectrum of CO, υ″ = 0 → υ′ = 9. The fluorescence light detected by the CsI photo-cathode covers transitions to the final levels υ″ = 0 to υ″ = 10, corresponding to an 80% efficiency. The Raman cell was filled with 700 mbars of H2.

Fig. 3
Fig. 3

Spectral line profiles of oxygen at 130 nm (room temperature). The density of atomic oxygen was ∼5 × 108/cm3: dots, Raman cell filled with 300 mbars of H2; crosses, 1000-mbar H2. See the text for an explanation.

Fig. 4
Fig. 4

Velocity profile of atomic oxygen sputtered from a boronized carbon surface by a pulsed argon-ion beam at 1.5 keV Two Thompson distributions22 can be fitted to the measured points: (1) surface energy of 0.5 eV and (2) surface energy of 4.8 eV Curve (3) = (1) plus (2).

Fig. 5
Fig. 5

Fluorescence signal versus wavelength for the deuterium Ly-α line at 121.534 nm. Atomic deuterium, with a density of 2 × 109/cm3, was produced on a hot tungsten wire (pressure in the Raman cell, 700 mbars).

Tables (1)

Tables Icon

Table 1 Relative Line Intensities of the Spectrum Shown in Fig. 2a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

κ λ = n co g f exp ( U / k T ) Z π r e λ 0 2 L ( λ λ 0 ) ,
f ( υ ) d υ { ( υ 2 / υ s 2 ) [ 1 + ( υ 2 / υ s 2 ) ] 3 } d υ ,

Metrics