Abstract

Improved performance of a continuous-wave (cw) laser spectrometer for Doppler-limited infrared spectroscopy of molecules based on difference-frequency generation (DFG) in AgGaS2 has been achieved. The spectrometer was configured to generate continuous scans of up to 1 cm−1 from 1550 to 2100 cm−1. An absolute precision of ∼6 × 10−3 cm−1 with a resolution of better than 1.0 MHz (3.3 × 10−5 cm−1) was achieved. Infrared powers of ∼20 μW were obtained by employing 90° Type I phase matching in a 45-mm-long AgGaS2 crystal. The high-resolution characteristics of the DFG spectrometer were evaluated by using H2O and N2O spectra. Preliminary infrared kinetic spctroscopy results involving the detection of transient CO radicals from 193-nm acetone photodissociation are also reported.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Pine, “Doppler-limited molecular spectroscopy by difference-frequency mixing,” J. Opt. Soc. Am. 64, 1683 (1974).
    [Crossref]
  2. A. S. Pine, “High resolution methane ν3-band spectra using a stabilized tunable difference-frequency laser system,” J. Opt. Soc. Am. 66, 97 (1976).
    [Crossref]
  3. T. Oka, “Observation of the infrared spectrum of H3+,” Phys. Rev. Lett. 45, 531 (1980).
    [Crossref]
  4. H. Petek, D. J. Nesbitt, P. O. Ogilby, and C. B. Moore, “Infrared flash kinetic spectroscopy: the ν1 and ν3 spectra of singlet methylene,” J. Phys. Chem. 87, 5367 (1983).
    [Crossref]
  5. C. M. Lovejoy and D. J. Nesbitt, “IHigh sensitivity, high-resolution IR laser spectroscopy in slit supersonic jets: application to N2HF ν1 and ν5 + ν1−ν5I” J. Chem. Phys. 86, 3151 (1987).
    [Crossref]
  6. D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, and R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H v1 band,” in Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, and A. Mooradian, eds. (Academic, New York, 1989), p. 126.
  7. A. G. Cartlidge, D. D. Arnone, R. J. Butcher, and W. A. Phillips, “High-resolution study of molecular adsorbates in the near-infrared by difference-frequency generation,” J. Mod. Opt. 37, 729 (1990).
    [Crossref]
  8. M. G. Bawendi, B. D. Rehfuss, and T. Oka, “Laboratory observation of hot bands of H3+” J. Chem. Phys. 93, 6200 (1990).
    [Crossref]
  9. P. F. Bernath, “High resolution infrared spectroscopy of transient molecules,” Ann. Rev. Phys. Chem. 41, 123 (1990).
    [Crossref]
  10. C. B. Dane, D. R. Lander, R. F. Curl, F. K. Tittel, Y. Guo, M. I. F. Ochsner, and C. B. Moore, “Infrared flash kinetic spectroscopy of HCO,” J. Chem. Phys. 88, 2121 (1988).
    [Crossref]
  11. P. Canarelli, Z. Benko, R. F. Curl, and F. K. Tittel, “A continuous wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992).
    [Crossref]
  12. J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976).
    [Crossref]
  13. G. D. Boyd, H. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurements of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971).
    [Crossref]
  14. C. A. Schwartz, D. S. Chemla, and B. Ayrault, “Direct measurement of the birefringence of AgGaS2,” Opt. Commun. 5, 244 (1972).
    [Crossref]
  15. G. C. Bhar and R. C. Smith, “Silver thiogallate (AgGaS2) – Part II: Linear optical properties,” IEEE J. Quantum Electron. QE-10, 546 (1974).
    [Crossref]
  16. G. C. Bhar, “Refractive index interpolation in phase-matching,” Appl. Opt. 15, 305 (1976).
    [Crossref]
  17. T. Itabe and J. L. Bufton, “Phase-matching measurements for 10 mm upconversion in AgGaS2” Appl. Opt. 23, 3044 (1984).
    [Crossref] [PubMed]
  18. Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
    [Crossref]
  19. T. B. Chu and M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523 (1985).
    [Crossref]
  20. K. Kato, “High-power difference frequency generation at 5 – 11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
    [Crossref]
  21. A. G. Yodh, H. W. K. Tom, G. D. Aumiller, and R. S. Miranda, “Generation of tunable mid-infrared picosecond pulses at 76 MHz,” J. Opt. Soc. Am. B 8, 1663 (1991).
    [Crossref]
  22. P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 55, 1 (1992).
  23. G. Guelachvili and N. K. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).
  24. J. S. Wells, D. A. Jennings, A. Hinz, J. S. Murray, and A. G. Maki, “Heterodyne frequency measurements on N2O at 5.3 and 9.0 μm,” J. Opt. Soc. Am. B 2, 857 (1985).
    [Crossref]
  25. K. A. Trentelman, S. H. Kable, D. B. Moss, and P. L. Houston, “Photodissociation dynamics of acetone at 193 nm: photofragment internal and translational energy distributions,” J. Chem. Phys. 91, 7498 (1989).
    [Crossref]

1992 (2)

P. Canarelli, Z. Benko, R. F. Curl, and F. K. Tittel, “A continuous wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992).
[Crossref]

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 55, 1 (1992).

1991 (1)

1990 (3)

A. G. Cartlidge, D. D. Arnone, R. J. Butcher, and W. A. Phillips, “High-resolution study of molecular adsorbates in the near-infrared by difference-frequency generation,” J. Mod. Opt. 37, 729 (1990).
[Crossref]

M. G. Bawendi, B. D. Rehfuss, and T. Oka, “Laboratory observation of hot bands of H3+” J. Chem. Phys. 93, 6200 (1990).
[Crossref]

P. F. Bernath, “High resolution infrared spectroscopy of transient molecules,” Ann. Rev. Phys. Chem. 41, 123 (1990).
[Crossref]

1989 (1)

K. A. Trentelman, S. H. Kable, D. B. Moss, and P. L. Houston, “Photodissociation dynamics of acetone at 193 nm: photofragment internal and translational energy distributions,” J. Chem. Phys. 91, 7498 (1989).
[Crossref]

1988 (1)

C. B. Dane, D. R. Lander, R. F. Curl, F. K. Tittel, Y. Guo, M. I. F. Ochsner, and C. B. Moore, “Infrared flash kinetic spectroscopy of HCO,” J. Chem. Phys. 88, 2121 (1988).
[Crossref]

1987 (1)

C. M. Lovejoy and D. J. Nesbitt, “IHigh sensitivity, high-resolution IR laser spectroscopy in slit supersonic jets: application to N2HF ν1 and ν5 + ν1−ν5I” J. Chem. Phys. 86, 3151 (1987).
[Crossref]

1985 (2)

J. S. Wells, D. A. Jennings, A. Hinz, J. S. Murray, and A. G. Maki, “Heterodyne frequency measurements on N2O at 5.3 and 9.0 μm,” J. Opt. Soc. Am. B 2, 857 (1985).
[Crossref]

T. B. Chu and M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523 (1985).
[Crossref]

1984 (3)

K. Kato, “High-power difference frequency generation at 5 – 11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
[Crossref]

T. Itabe and J. L. Bufton, “Phase-matching measurements for 10 mm upconversion in AgGaS2” Appl. Opt. 23, 3044 (1984).
[Crossref] [PubMed]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[Crossref]

1983 (1)

H. Petek, D. J. Nesbitt, P. O. Ogilby, and C. B. Moore, “Infrared flash kinetic spectroscopy: the ν1 and ν3 spectra of singlet methylene,” J. Phys. Chem. 87, 5367 (1983).
[Crossref]

1980 (1)

T. Oka, “Observation of the infrared spectrum of H3+,” Phys. Rev. Lett. 45, 531 (1980).
[Crossref]

1976 (3)

1974 (2)

G. C. Bhar and R. C. Smith, “Silver thiogallate (AgGaS2) – Part II: Linear optical properties,” IEEE J. Quantum Electron. QE-10, 546 (1974).
[Crossref]

A. S. Pine, “Doppler-limited molecular spectroscopy by difference-frequency mixing,” J. Opt. Soc. Am. 64, 1683 (1974).
[Crossref]

1972 (1)

C. A. Schwartz, D. S. Chemla, and B. Ayrault, “Direct measurement of the birefringence of AgGaS2,” Opt. Commun. 5, 244 (1972).
[Crossref]

1971 (1)

G. D. Boyd, H. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurements of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971).
[Crossref]

Arnone, D. D.

A. G. Cartlidge, D. D. Arnone, R. J. Butcher, and W. A. Phillips, “High-resolution study of molecular adsorbates in the near-infrared by difference-frequency generation,” J. Mod. Opt. 37, 729 (1990).
[Crossref]

Aumiller, G. D.

Ayrault, B.

C. A. Schwartz, D. S. Chemla, and B. Ayrault, “Direct measurement of the birefringence of AgGaS2,” Opt. Commun. 5, 244 (1972).
[Crossref]

Bawendi, M. G.

M. G. Bawendi, B. D. Rehfuss, and T. Oka, “Laboratory observation of hot bands of H3+” J. Chem. Phys. 93, 6200 (1990).
[Crossref]

Benko, Z.

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 55, 1 (1992).

P. Canarelli, Z. Benko, R. F. Curl, and F. K. Tittel, “A continuous wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992).
[Crossref]

Bermejo, D.

D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, and R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H v1 band,” in Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, and A. Mooradian, eds. (Academic, New York, 1989), p. 126.

Bernath, P. F.

P. F. Bernath, “High resolution infrared spectroscopy of transient molecules,” Ann. Rev. Phys. Chem. 41, 123 (1990).
[Crossref]

Bhar, G. C.

G. C. Bhar, “Refractive index interpolation in phase-matching,” Appl. Opt. 15, 305 (1976).
[Crossref]

G. C. Bhar and R. C. Smith, “Silver thiogallate (AgGaS2) – Part II: Linear optical properties,” IEEE J. Quantum Electron. QE-10, 546 (1974).
[Crossref]

Boyd, G. D.

G. D. Boyd, H. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurements of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971).
[Crossref]

Broyer, M.

T. B. Chu and M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523 (1985).
[Crossref]

Bufton, J. L.

Butcher, R. J.

A. G. Cartlidge, D. D. Arnone, R. J. Butcher, and W. A. Phillips, “High-resolution study of molecular adsorbates in the near-infrared by difference-frequency generation,” J. Mod. Opt. 37, 729 (1990).
[Crossref]

Byer, R. L.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[Crossref]

Canarelli, P.

P. Canarelli, Z. Benko, R. F. Curl, and F. K. Tittel, “A continuous wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992).
[Crossref]

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 55, 1 (1992).

Cancio, P.

D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, and R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H v1 band,” in Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, and A. Mooradian, eds. (Academic, New York, 1989), p. 126.

Cartlidge, A. G.

A. G. Cartlidge, D. D. Arnone, R. J. Butcher, and W. A. Phillips, “High-resolution study of molecular adsorbates in the near-infrared by difference-frequency generation,” J. Mod. Opt. 37, 729 (1990).
[Crossref]

Chemla, D. S.

C. A. Schwartz, D. S. Chemla, and B. Ayrault, “Direct measurement of the birefringence of AgGaS2,” Opt. Commun. 5, 244 (1972).
[Crossref]

Chu, T. B.

T. B. Chu and M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523 (1985).
[Crossref]

Curl, R. F.

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 55, 1 (1992).

P. Canarelli, Z. Benko, R. F. Curl, and F. K. Tittel, “A continuous wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992).
[Crossref]

C. B. Dane, D. R. Lander, R. F. Curl, F. K. Tittel, Y. Guo, M. I. F. Ochsner, and C. B. Moore, “Infrared flash kinetic spectroscopy of HCO,” J. Chem. Phys. 88, 2121 (1988).
[Crossref]

Dane, C. B.

C. B. Dane, D. R. Lander, R. F. Curl, F. K. Tittel, Y. Guo, M. I. F. Ochsner, and C. B. Moore, “Infrared flash kinetic spectroscopy of HCO,” J. Chem. Phys. 88, 2121 (1988).
[Crossref]

Domenech, J. L.

D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, and R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H v1 band,” in Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, and A. Mooradian, eds. (Academic, New York, 1989), p. 126.

Eckardt, R. C.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[Crossref]

Escribano, R.

D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, and R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H v1 band,” in Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, and A. Mooradian, eds. (Academic, New York, 1989), p. 126.

Fan, Y. X.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[Crossref]

Feigelson, R. S.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[Crossref]

Guelachvili, G.

G. Guelachvili and N. K. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).

Guo, Y.

C. B. Dane, D. R. Lander, R. F. Curl, F. K. Tittel, Y. Guo, M. I. F. Ochsner, and C. B. Moore, “Infrared flash kinetic spectroscopy of HCO,” J. Chem. Phys. 88, 2121 (1988).
[Crossref]

Hall, J. L.

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976).
[Crossref]

Hielscher, A. H.

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 55, 1 (1992).

Hinz, A.

Houston, P. L.

K. A. Trentelman, S. H. Kable, D. B. Moss, and P. L. Houston, “Photodissociation dynamics of acetone at 193 nm: photofragment internal and translational energy distributions,” J. Chem. Phys. 91, 7498 (1989).
[Crossref]

Itabe, T.

Jennings, D. A.

Kable, S. H.

K. A. Trentelman, S. H. Kable, D. B. Moss, and P. L. Houston, “Photodissociation dynamics of acetone at 193 nm: photofragment internal and translational energy distributions,” J. Chem. Phys. 91, 7498 (1989).
[Crossref]

Kasper, H.

G. D. Boyd, H. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurements of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971).
[Crossref]

Kato, K.

K. Kato, “High-power difference frequency generation at 5 – 11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
[Crossref]

Lander, D. R.

C. B. Dane, D. R. Lander, R. F. Curl, F. K. Tittel, Y. Guo, M. I. F. Ochsner, and C. B. Moore, “Infrared flash kinetic spectroscopy of HCO,” J. Chem. Phys. 88, 2121 (1988).
[Crossref]

Lee, S. A.

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976).
[Crossref]

Lovejoy, C. M.

C. M. Lovejoy and D. J. Nesbitt, “IHigh sensitivity, high-resolution IR laser spectroscopy in slit supersonic jets: application to N2HF ν1 and ν5 + ν1−ν5I” J. Chem. Phys. 86, 3151 (1987).
[Crossref]

Maki, A. G.

McFee, J. H.

G. D. Boyd, H. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurements of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971).
[Crossref]

Miranda, R. S.

Moore, C. B.

C. B. Dane, D. R. Lander, R. F. Curl, F. K. Tittel, Y. Guo, M. I. F. Ochsner, and C. B. Moore, “Infrared flash kinetic spectroscopy of HCO,” J. Chem. Phys. 88, 2121 (1988).
[Crossref]

H. Petek, D. J. Nesbitt, P. O. Ogilby, and C. B. Moore, “Infrared flash kinetic spectroscopy: the ν1 and ν3 spectra of singlet methylene,” J. Phys. Chem. 87, 5367 (1983).
[Crossref]

Moss, D. B.

K. A. Trentelman, S. H. Kable, D. B. Moss, and P. L. Houston, “Photodissociation dynamics of acetone at 193 nm: photofragment internal and translational energy distributions,” J. Chem. Phys. 91, 7498 (1989).
[Crossref]

Murray, J. S.

Nesbitt, D. J.

C. M. Lovejoy and D. J. Nesbitt, “IHigh sensitivity, high-resolution IR laser spectroscopy in slit supersonic jets: application to N2HF ν1 and ν5 + ν1−ν5I” J. Chem. Phys. 86, 3151 (1987).
[Crossref]

H. Petek, D. J. Nesbitt, P. O. Ogilby, and C. B. Moore, “Infrared flash kinetic spectroscopy: the ν1 and ν3 spectra of singlet methylene,” J. Phys. Chem. 87, 5367 (1983).
[Crossref]

Ochsner, M. I. F.

C. B. Dane, D. R. Lander, R. F. Curl, F. K. Tittel, Y. Guo, M. I. F. Ochsner, and C. B. Moore, “Infrared flash kinetic spectroscopy of HCO,” J. Chem. Phys. 88, 2121 (1988).
[Crossref]

Ogilby, P. O.

H. Petek, D. J. Nesbitt, P. O. Ogilby, and C. B. Moore, “Infrared flash kinetic spectroscopy: the ν1 and ν3 spectra of singlet methylene,” J. Phys. Chem. 87, 5367 (1983).
[Crossref]

Oka, T.

M. G. Bawendi, B. D. Rehfuss, and T. Oka, “Laboratory observation of hot bands of H3+” J. Chem. Phys. 93, 6200 (1990).
[Crossref]

T. Oka, “Observation of the infrared spectrum of H3+,” Phys. Rev. Lett. 45, 531 (1980).
[Crossref]

Petek, H.

H. Petek, D. J. Nesbitt, P. O. Ogilby, and C. B. Moore, “Infrared flash kinetic spectroscopy: the ν1 and ν3 spectra of singlet methylene,” J. Phys. Chem. 87, 5367 (1983).
[Crossref]

Phillips, W. A.

A. G. Cartlidge, D. D. Arnone, R. J. Butcher, and W. A. Phillips, “High-resolution study of molecular adsorbates in the near-infrared by difference-frequency generation,” J. Mod. Opt. 37, 729 (1990).
[Crossref]

Pine, A. S.

Rao, N. K.

G. Guelachvili and N. K. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).

Rehfuss, B. D.

M. G. Bawendi, B. D. Rehfuss, and T. Oka, “Laboratory observation of hot bands of H3+” J. Chem. Phys. 93, 6200 (1990).
[Crossref]

Route, R. K.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[Crossref]

Santos, J.

D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, and R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H v1 band,” in Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, and A. Mooradian, eds. (Academic, New York, 1989), p. 126.

Schwartz, C. A.

C. A. Schwartz, D. S. Chemla, and B. Ayrault, “Direct measurement of the birefringence of AgGaS2,” Opt. Commun. 5, 244 (1972).
[Crossref]

Smith, R. C.

G. C. Bhar and R. C. Smith, “Silver thiogallate (AgGaS2) – Part II: Linear optical properties,” IEEE J. Quantum Electron. QE-10, 546 (1974).
[Crossref]

Tittel, F. K.

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 55, 1 (1992).

P. Canarelli, Z. Benko, R. F. Curl, and F. K. Tittel, “A continuous wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197 (1992).
[Crossref]

C. B. Dane, D. R. Lander, R. F. Curl, F. K. Tittel, Y. Guo, M. I. F. Ochsner, and C. B. Moore, “Infrared flash kinetic spectroscopy of HCO,” J. Chem. Phys. 88, 2121 (1988).
[Crossref]

Tom, H. W. K.

Trentelman, K. A.

K. A. Trentelman, S. H. Kable, D. B. Moss, and P. L. Houston, “Photodissociation dynamics of acetone at 193 nm: photofragment internal and translational energy distributions,” J. Chem. Phys. 91, 7498 (1989).
[Crossref]

Wells, J. S.

Yodh, A. G.

Ann. Rev. Phys. Chem. (1)

P. F. Bernath, “High resolution infrared spectroscopy of transient molecules,” Ann. Rev. Phys. Chem. 41, 123 (1990).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367 (1976).
[Crossref]

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, and R. S. Feigelson, “AgGaS2 infrared parametric oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[Crossref]

IEEE J. Quantum Electron. (4)

G. D. Boyd, H. Kasper, and J. H. McFee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurements of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563 (1971).
[Crossref]

G. C. Bhar and R. C. Smith, “Silver thiogallate (AgGaS2) – Part II: Linear optical properties,” IEEE J. Quantum Electron. QE-10, 546 (1974).
[Crossref]

K. Kato, “High-power difference frequency generation at 5 – 11 μm in AgGaS2,” IEEE J. Quantum Electron. QE-20, 698 (1984).
[Crossref]

P. Canarelli, Z. Benko, A. H. Hielscher, R. F. Curl, and F. K. Tittel, “Measurement of nonlinear coefficient and phase matching characteristics of AgGaS2,” IEEE J. Quantum Electron. 55, 1 (1992).

J. Chem. Phys. (4)

K. A. Trentelman, S. H. Kable, D. B. Moss, and P. L. Houston, “Photodissociation dynamics of acetone at 193 nm: photofragment internal and translational energy distributions,” J. Chem. Phys. 91, 7498 (1989).
[Crossref]

C. B. Dane, D. R. Lander, R. F. Curl, F. K. Tittel, Y. Guo, M. I. F. Ochsner, and C. B. Moore, “Infrared flash kinetic spectroscopy of HCO,” J. Chem. Phys. 88, 2121 (1988).
[Crossref]

M. G. Bawendi, B. D. Rehfuss, and T. Oka, “Laboratory observation of hot bands of H3+” J. Chem. Phys. 93, 6200 (1990).
[Crossref]

C. M. Lovejoy and D. J. Nesbitt, “IHigh sensitivity, high-resolution IR laser spectroscopy in slit supersonic jets: application to N2HF ν1 and ν5 + ν1−ν5I” J. Chem. Phys. 86, 3151 (1987).
[Crossref]

J. Mod. Opt. (1)

A. G. Cartlidge, D. D. Arnone, R. J. Butcher, and W. A. Phillips, “High-resolution study of molecular adsorbates in the near-infrared by difference-frequency generation,” J. Mod. Opt. 37, 729 (1990).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (3)

J. Phys. (Paris) (1)

T. B. Chu and M. Broyer, “Intracavity cw difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. (Paris) 46, 523 (1985).
[Crossref]

J. Phys. Chem. (1)

H. Petek, D. J. Nesbitt, P. O. Ogilby, and C. B. Moore, “Infrared flash kinetic spectroscopy: the ν1 and ν3 spectra of singlet methylene,” J. Phys. Chem. 87, 5367 (1983).
[Crossref]

Opt. Commun. (1)

C. A. Schwartz, D. S. Chemla, and B. Ayrault, “Direct measurement of the birefringence of AgGaS2,” Opt. Commun. 5, 244 (1972).
[Crossref]

Phys. Rev. Lett. (1)

T. Oka, “Observation of the infrared spectrum of H3+,” Phys. Rev. Lett. 45, 531 (1980).
[Crossref]

Other (2)

D. Bermejo, J. L. Domenech, P. Cancio, J. Santos, and R. Escribano, “Infrared difference frequency laser and SRS spectrometers. Q-branch of CD3H v1 band,” in Laser Spectroscopy IX, M. S. Feld, J. S. Thomas, and A. Mooradian, eds. (Academic, New York, 1989), p. 126.

G. Guelachvili and N. K. Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the DFG laser spectrometer.

Fig. 2
Fig. 2

Experimental 90° phase-matching curve of AgGaS2 from 1550 to 2100 cm−1. The solid curves correspond to the calculated curves based on the Sellmeier parameters of Ref. 18 below.

Fig. 3
Fig. 3

Dependence of infrared DFG power from AgGaS2 on the IR wavelength obtained by pumping with 500 mW of power from each input laser. The solid curve corresponds to a theoretical power output, based on a beam diameter of 300 μm in the focal plane located in the middle of the crystal and a nonlinear coefficient δ36 = 8 × 10−14 m/V.

Fig. 4
Fig. 4

Dependence of the infrared DFG power on the power of the signal beam (Ti:sapphire laser). The DCM dye laser was fixed at a power of 60 mW.

Fig. 5
Fig. 5

Profile of the IR beam 1 m beyond the crystal output surface. The solid curve represents a Gaussian fit.

Fig. 6
Fig. 6

H2O spectrum at 1845 cm−1 showing phase matching in the AgGaS2 DFG mixing crystal.

Fig. 7
Fig. 7

Survey absorption spectrum of the 0111–0000 band of N2O. The N2O pressure is 300 mTorr, and the path length is 32 m. Data points were taken at 20-MHz intervals. For comparison the line positions calculated and measured in Refs. 23 and 24 are indicated. N2O lines with asterisks do not belong to the Q branch.

Fig. 8
Fig. 8

High-resolution spectrum of the N2O Q-branch origin at 1880.26 cm−1.

Fig. 9
Fig. 9

Time-dependent absorption intensities observed for the production of CO radicals from 193-nm acetone photodissociation. The spectra show CO products in the υ = 0 (upper panel), υ = 1 (middle panel), and υ = 2 (lower panel) vibrational states.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P i = 4 ω i 2 k s d eff L 0 π C 3 n p n s n i ( 1 + μ ) P s P p h ( μ , ξ ) .
δ 36 = [ 0 ( n p 2 1 ) ( n s 2 1 ) ( n i 2 1 ) ] 1 d 36
R X + h ν R + X ,

Metrics