Abstract

A spectroscopic investigation of Nd3+ in yttrium lithium fluoride was performed. Spectrally and orientationally resolved cross sections for the 4F3/24I11/2 and 4F3/24I9/2 transitions are presented. We applied the Judd–Ofelt theory to measured absorption spectra to determine the orientation-averaged intensity parameters Ω2 = 0.362 × 10− 20 cm2, Ω4 = 4.02 × 10− 20 cm2, and Ω6 = 4.84 × 10− 20 cm2. Using these intensity parameters, we predicted the radiative lifetime of the metastable 4F3/2 state to be 525 μS, in excellent agreement with measured 4F3/2 decay signatures. Finally, absorption cross-section data are presented that will be of interest to the laser designer.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “Cw laser operation in NdfYLF,” IEEE J. Quantum Electron. QE-18, 159–163 (1982).
    [Crossref]
  2. A. L. Harmer, A. Linz, and D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
    [Crossref]
  3. W. F. Krupke, “New rare earth quantum electronics devices: a calculation approach,” in Proceedings of the IEEE Region IV Conference (Institute of Electrical and Electronics Engineers, New York, 1974), pp. 17–31.
  4. K. K. Deb, R. G. Buser, C. A. Morrison, and R. P. Leavitt, “Crystal fields and intensities of triply ionized rare-earth ions in cubic lanthanum oxyfluoride: an efficient 4F3/2–4I9/2 LaOF:Nd laser,” J. Opt. Soc. Am. 71, 1463–1466 (1981).
    [Crossref]
  5. J. E. Murray, “Pulse gain and thermal lensing of Nd:YiLiF4,” IEEE J. Quantum Electron. QE-19, 488–491 (1983).
    [Crossref]
  6. M. G. Knights, H. Zenzie, G. Rines, M. Thomas, C. Carey, E. P. Chicklis, and H. P. Jenssen, “Cesium filter resonance operation of Nd:YLF,” in High Power and Solid State Lasers, W. W. Simmons, eds., Proc. Soc. Photo-Opt. Instrum. Eng.622, 180–184 (1986).
    [Crossref]
  7. J. C. McCarthy, M. G. Knights, and E. P. Chicklis, “Laser performance of Nd:YLF,” in Advanced Laser Technology and Applications, L. Esterowitz, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.335, 2–4 (1982).
    [Crossref]
  8. W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,” IEEE J. Quantum Electron. QE-7, 153–159 (1971).
    [Crossref]
  9. T. S. Lomheim and L. G. DeShazer, “Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
    [Crossref]
  10. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
    [Crossref]
  11. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).
    [Crossref]
  12. A. A. Kaminskii, in Laser Crystals, D. L. MacAdam, ed., Vol. 14 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1981), pp. 149–160.
  13. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of trivalent lanthanides in LaF3,” (Department of Physics, The Johns Hopkins University, Baltimore, Md., 1975).
  14. J. A. Caird and R. J. Beach, “Effective lifetimes and emission cross-sections for Lg-750, LHG-8, and LG-760 phosphate laser glasses,” internal memo (Lawrence Livermore National Laboratory, Livermore, Calif., 1988).

1983 (1)

J. E. Murray, “Pulse gain and thermal lensing of Nd:YiLiF4,” IEEE J. Quantum Electron. QE-19, 488–491 (1983).
[Crossref]

1982 (1)

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “Cw laser operation in NdfYLF,” IEEE J. Quantum Electron. QE-18, 159–163 (1982).
[Crossref]

1981 (1)

1978 (1)

T. S. Lomheim and L. G. DeShazer, “Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
[Crossref]

1971 (1)

W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,” IEEE J. Quantum Electron. QE-7, 153–159 (1971).
[Crossref]

1969 (1)

A. L. Harmer, A. Linz, and D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).
[Crossref]

Beach, R. J.

J. A. Caird and R. J. Beach, “Effective lifetimes and emission cross-sections for Lg-750, LHG-8, and LG-760 phosphate laser glasses,” internal memo (Lawrence Livermore National Laboratory, Livermore, Calif., 1988).

Buser, R. G.

Caird, J. A.

J. A. Caird and R. J. Beach, “Effective lifetimes and emission cross-sections for Lg-750, LHG-8, and LG-760 phosphate laser glasses,” internal memo (Lawrence Livermore National Laboratory, Livermore, Calif., 1988).

Carey, C.

M. G. Knights, H. Zenzie, G. Rines, M. Thomas, C. Carey, E. P. Chicklis, and H. P. Jenssen, “Cesium filter resonance operation of Nd:YLF,” in High Power and Solid State Lasers, W. W. Simmons, eds., Proc. Soc. Photo-Opt. Instrum. Eng.622, 180–184 (1986).
[Crossref]

Carnall, W. T.

W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of trivalent lanthanides in LaF3,” (Department of Physics, The Johns Hopkins University, Baltimore, Md., 1975).

Chicklis, E. P.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “Cw laser operation in NdfYLF,” IEEE J. Quantum Electron. QE-18, 159–163 (1982).
[Crossref]

M. G. Knights, H. Zenzie, G. Rines, M. Thomas, C. Carey, E. P. Chicklis, and H. P. Jenssen, “Cesium filter resonance operation of Nd:YLF,” in High Power and Solid State Lasers, W. W. Simmons, eds., Proc. Soc. Photo-Opt. Instrum. Eng.622, 180–184 (1986).
[Crossref]

J. C. McCarthy, M. G. Knights, and E. P. Chicklis, “Laser performance of Nd:YLF,” in Advanced Laser Technology and Applications, L. Esterowitz, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.335, 2–4 (1982).
[Crossref]

Crosswhite, H.

W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of trivalent lanthanides in LaF3,” (Department of Physics, The Johns Hopkins University, Baltimore, Md., 1975).

Crosswhite, H. M.

W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of trivalent lanthanides in LaF3,” (Department of Physics, The Johns Hopkins University, Baltimore, Md., 1975).

Deb, K. K.

DeShazer, L. G.

T. S. Lomheim and L. G. DeShazer, “Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
[Crossref]

Gabbe, D. R.

A. L. Harmer, A. Linz, and D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[Crossref]

Grasso, R. J.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “Cw laser operation in NdfYLF,” IEEE J. Quantum Electron. QE-18, 159–163 (1982).
[Crossref]

Harmer, A. L.

A. L. Harmer, A. Linz, and D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[Crossref]

Jenssen, H. P.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “Cw laser operation in NdfYLF,” IEEE J. Quantum Electron. QE-18, 159–163 (1982).
[Crossref]

M. G. Knights, H. Zenzie, G. Rines, M. Thomas, C. Carey, E. P. Chicklis, and H. P. Jenssen, “Cesium filter resonance operation of Nd:YLF,” in High Power and Solid State Lasers, W. W. Simmons, eds., Proc. Soc. Photo-Opt. Instrum. Eng.622, 180–184 (1986).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, in Laser Crystals, D. L. MacAdam, ed., Vol. 14 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1981), pp. 149–160.

Knights, M. G.

J. C. McCarthy, M. G. Knights, and E. P. Chicklis, “Laser performance of Nd:YLF,” in Advanced Laser Technology and Applications, L. Esterowitz, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.335, 2–4 (1982).
[Crossref]

M. G. Knights, H. Zenzie, G. Rines, M. Thomas, C. Carey, E. P. Chicklis, and H. P. Jenssen, “Cesium filter resonance operation of Nd:YLF,” in High Power and Solid State Lasers, W. W. Simmons, eds., Proc. Soc. Photo-Opt. Instrum. Eng.622, 180–184 (1986).
[Crossref]

Krupke, W. F.

W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,” IEEE J. Quantum Electron. QE-7, 153–159 (1971).
[Crossref]

W. F. Krupke, “New rare earth quantum electronics devices: a calculation approach,” in Proceedings of the IEEE Region IV Conference (Institute of Electrical and Electronics Engineers, New York, 1974), pp. 17–31.

Leavitt, R. P.

Linz, A.

A. L. Harmer, A. Linz, and D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[Crossref]

Lomheim, T. S.

T. S. Lomheim and L. G. DeShazer, “Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
[Crossref]

McCarthy, J. C.

J. C. McCarthy, M. G. Knights, and E. P. Chicklis, “Laser performance of Nd:YLF,” in Advanced Laser Technology and Applications, L. Esterowitz, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.335, 2–4 (1982).
[Crossref]

Morrison, C. A.

Murray, J. E.

J. E. Murray, “Pulse gain and thermal lensing of Nd:YiLiF4,” IEEE J. Quantum Electron. QE-19, 488–491 (1983).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).
[Crossref]

Pollak, T. M.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “Cw laser operation in NdfYLF,” IEEE J. Quantum Electron. QE-18, 159–163 (1982).
[Crossref]

Rines, G.

M. G. Knights, H. Zenzie, G. Rines, M. Thomas, C. Carey, E. P. Chicklis, and H. P. Jenssen, “Cesium filter resonance operation of Nd:YLF,” in High Power and Solid State Lasers, W. W. Simmons, eds., Proc. Soc. Photo-Opt. Instrum. Eng.622, 180–184 (1986).
[Crossref]

Thomas, M.

M. G. Knights, H. Zenzie, G. Rines, M. Thomas, C. Carey, E. P. Chicklis, and H. P. Jenssen, “Cesium filter resonance operation of Nd:YLF,” in High Power and Solid State Lasers, W. W. Simmons, eds., Proc. Soc. Photo-Opt. Instrum. Eng.622, 180–184 (1986).
[Crossref]

Wing, W. F.

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “Cw laser operation in NdfYLF,” IEEE J. Quantum Electron. QE-18, 159–163 (1982).
[Crossref]

Zenzie, H.

M. G. Knights, H. Zenzie, G. Rines, M. Thomas, C. Carey, E. P. Chicklis, and H. P. Jenssen, “Cesium filter resonance operation of Nd:YLF,” in High Power and Solid State Lasers, W. W. Simmons, eds., Proc. Soc. Photo-Opt. Instrum. Eng.622, 180–184 (1986).
[Crossref]

IEEE J. Quantum Electron. (3)

T. M. Pollak, W. F. Wing, R. J. Grasso, E. P. Chicklis, and H. P. Jenssen, “Cw laser operation in NdfYLF,” IEEE J. Quantum Electron. QE-18, 159–163 (1982).
[Crossref]

J. E. Murray, “Pulse gain and thermal lensing of Nd:YiLiF4,” IEEE J. Quantum Electron. QE-19, 488–491 (1983).
[Crossref]

W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd:YAG,” IEEE J. Quantum Electron. QE-7, 153–159 (1971).
[Crossref]

J. Appl. Phys. (1)

T. S. Lomheim and L. G. DeShazer, “Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate,” J. Appl. Phys. 49, 5517–5522 (1978).
[Crossref]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. Solids (1)

A. L. Harmer, A. Linz, and D. R. Gabbe, “Fluorescence of Nd3+ in lithium yttrium fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[Crossref]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
[Crossref]

Other (6)

W. F. Krupke, “New rare earth quantum electronics devices: a calculation approach,” in Proceedings of the IEEE Region IV Conference (Institute of Electrical and Electronics Engineers, New York, 1974), pp. 17–31.

M. G. Knights, H. Zenzie, G. Rines, M. Thomas, C. Carey, E. P. Chicklis, and H. P. Jenssen, “Cesium filter resonance operation of Nd:YLF,” in High Power and Solid State Lasers, W. W. Simmons, eds., Proc. Soc. Photo-Opt. Instrum. Eng.622, 180–184 (1986).
[Crossref]

J. C. McCarthy, M. G. Knights, and E. P. Chicklis, “Laser performance of Nd:YLF,” in Advanced Laser Technology and Applications, L. Esterowitz, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.335, 2–4 (1982).
[Crossref]

A. A. Kaminskii, in Laser Crystals, D. L. MacAdam, ed., Vol. 14 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1981), pp. 149–160.

W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of trivalent lanthanides in LaF3,” (Department of Physics, The Johns Hopkins University, Baltimore, Md., 1975).

J. A. Caird and R. J. Beach, “Effective lifetimes and emission cross-sections for Lg-750, LHG-8, and LG-760 phosphate laser glasses,” internal memo (Lawrence Livermore National Laboratory, Livermore, Calif., 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption cross section for Nd in YLF at room temperature for light polarized perpendicular to the c axis.

Fig. 2
Fig. 2

Absorption cross section for Nd in YLF at room temperature for light polarized parallel to the c axis.

Fig. 3
Fig. 3

Absorption cross section for Nd in YLF at room temperature for light polarized perpendicular to the c axis.

Fig. 4
Fig. 4

Absorption cross section for Nd in YLF at room temperature for light polarized parallel to the c axis.

Fig. 5
Fig. 5

Absorption cross section for Nd in YLF at room temperature for light polarized perpendicular to the c axis.

Fig. 6
Fig. 6

Absorption cross section for Nd in YLF at room temperature for light polarized parallel to the c axis.

Fig. 7
Fig. 7

Nd 4F3/2 fluorescence decay signature for a concentration of 1.7 × 10 −20 cm −3. The effective lifetime is 501 μs.

Fig. 8
Fig. 8

Calculated emission cross sections perpendicular (σ) and parallel (π) to the c axis for the Nd 4F3/2 – 4I9/2 transition in YLF.

Fig. 9
Fig. 9

Calculated emission cross sections perpendicular (σ) and parallel (π) to the c axis for the Nd 4F3/24I11/2 transition in YLF.

Tables (4)

Tables Icon

Table 1 Oriented Absorption Transition Intensities in Nd3+:YLF

Tables Icon

Table 2 Polarization-Averaged Absorption Transition Intensities in Nd3+:YLF

Tables Icon

Table 3 Calculated Transition Rates in Nd3+:YLF

Tables Icon

Table 4 Effective Fluorescence Lifetime for Nd3+:YLF

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S meas ( J J ) = 3 c h 8 π 3 1 e 2 2 J + 1 n Nd 9 n ( n 2 + 2 ) 2 ln 10 λ l × J J OD ( λ ) d λ ,
S meas ( J J ) = t = 2 , 4 , 6 Ω t | Φ J U ( t ) Φ J | 2 ,
Ω 2 = 0.362 × 10 20 cm 2 , Ω 4 = 4.02 × 10 20 cm 2 , Ω 6 = 4.84 × 10 20 cm 2 .
rms δ S = [ ( σ S ) 2 / ( number of transitions ) 3 ] 1 / 2 ,
A ( J J ) = 64 π 4 e 2 3 h ( 2 J + 1 ) λ 3 n ( n 2 + 2 ) 2 9 S ( J J ) .
T eff = 1 I 0 0 I ( t ) d t
σ J J ( λ ) = A ( J J ) λ 4 8 π c n 2 g ( λ ) ,
A σ A π = I σ ( λ ) d ( λ ) I π ( λ ) d ( λ ) ,
A σ + A π 3 = A Judd Ofelt ,

Metrics