Abstract

We report an investigation of the dependence on transition dipole moment of isolated line intensities in degenerate four-wave mixing in the A2Σ+ (υ′ = 0) ← X2Π (υ″ = 0) band for NO. For spectrally integrated intensities we found that the dependence was well described by a power law μx, where μ is the one-photon transition dipole moment. As a result of saturation, the exponent x depends on laser intensity. The observations are in reasonable agreement with a simple two-level model [ Opt. Lett. 294 ( 1978); Opt. Lett. 3, 205 ( 1978)], which predicts limiting dependences of μ8 and μ3 for low and high intensities, respectively. At intermediate laser intensities the model is consistent with an observed rapid decrease in the exponent with increasing laser intensity, followed by a plateau extending to high intensities.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Pender and L. Hesselink, Opt. Lett. 10, 264 (1985).
    [Crossref] [PubMed]
  2. P. Ewart and S. V. O’Leary, Opt. Lett. 11, 279 (1986).
    [Crossref]
  3. P. Ewart, P. Snowdon, and I. Magnusson, Opt. Lett. 14, 563 (1989).
    [Crossref] [PubMed]
  4. T. Dreier and D. J. Rakestraw, Opt. Lett. 15, 72 (1990).
    [Crossref] [PubMed]
  5. T. Dreier and D. J. Rakestraw, Appl. Phys. B 50, 479 (1990).
    [Crossref]
  6. D. J. Rakestraw, R. L. Farrow, and T. Dreier, Opt. Lett. 15, 709 (1990).
    [Crossref] [PubMed]
  7. B. A. Mann, S. V. O’Leary, A. G. Astill, and D. A. Greenhalgh, Appl. Phys. B 54, 271 (1992).
    [Crossref]
  8. R. L. Farrow, D. J. Rakestraw, R. L. Vander Wal, and T. Dreier, “Line intensities of resonant degenerate four-wave mixing in nitric oxide,” in Proceedings of the Tenth International Conference on Laser Spectroscopy, M. Ducloy, E. Giacobino, and G. Camy, eds. (World Scientific, Singapore, 1992), p. 472.
  9. R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
    [Crossref]
  10. D. G. Steel, R. C. Lind, and J. F. Lam, Phys. Rev. A 23, 2513 (1981).
    [Crossref]
  11. D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, Appl. Phys. Lett. 35, 376 (1979).
    [Crossref]
  12. G. Agrawal, A. V. Lerberghe, P. Aubourg, and J. L. Boulnois, Opt. Lett. 7, 540 (1982).
    [Crossref] [PubMed]
  13. D. C. Jain and R. C. Sahni, Trans. Faraday Soc. 64, 3169 (1968).
    [Crossref]
  14. R. L. Abrams and R. C. Lind, Opt. Lett. 2, 94 (1978);Opt. Lett. 3, 205 (1978).
    [Crossref]
  15. R. P. Lucht, N. M. Laurendeau, and D. W. Sweeney, Appl. Opt. 19, 3295 (1980).
    [Crossref] [PubMed]
  16. T. S. Rose, W. L. Wilson, G. Wäckerle, and M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
    [Crossref]
  17. I. Deézi, Acta Phys. Hung. 9, 125 (1958).
    [Crossref]
  18. R. Engleman, P. E. Rouse, H. M. Peek, and V. D. Baiamonte, “Beta and gamma band systems of nitric oxide,” Rep. LA-4364 (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1969).
  19. I. S. McDermid and J. B. Laudenslager, J. Quant Spectrosc. Radiat. Transfer 27, 483 (1982).
    [Crossref]
  20. M.-S. Chou, A. M. Dean, and D. Stern, J. Chem. Phys. 78, 5962 (1983).
    [Crossref]
  21. R. C. Hilborn, Am. J. Phys. 50, 982 (1982).
    [Crossref]
  22. A. J. D. Farmer, V. Hasson, and R. W. Nicholls, J. Quant Spectrosc. Radiat. Transfer 12, 627 (1972).
    [Crossref]
  23. See, for example, the solution of the two-level, saturable absorber model including effects of absorber motion in R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 240.
  24. See, for example, B. Attal-Trétout, P. Monot, and K. Müiller-Dethlefs, Mol. Phys. 73, 1257 (1991);I. Aben, W. Ubachs, G. van der Zwan, and W. Hogervorst, “Polarization effects in resonant four-wave mixing processes,” submitted to Mol. Phys.
    [Crossref]
  25. M. A. Yuratich, Mol. Phys. 38, 625 (1979).
    [Crossref]
  26. M. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1982), p. 73.

1992 (1)

B. A. Mann, S. V. O’Leary, A. G. Astill, and D. A. Greenhalgh, Appl. Phys. B 54, 271 (1992).
[Crossref]

1991 (1)

See, for example, B. Attal-Trétout, P. Monot, and K. Müiller-Dethlefs, Mol. Phys. 73, 1257 (1991);I. Aben, W. Ubachs, G. van der Zwan, and W. Hogervorst, “Polarization effects in resonant four-wave mixing processes,” submitted to Mol. Phys.
[Crossref]

1990 (3)

1989 (1)

1987 (1)

T. S. Rose, W. L. Wilson, G. Wäckerle, and M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[Crossref]

1986 (1)

1985 (1)

1983 (1)

M.-S. Chou, A. M. Dean, and D. Stern, J. Chem. Phys. 78, 5962 (1983).
[Crossref]

1982 (3)

R. C. Hilborn, Am. J. Phys. 50, 982 (1982).
[Crossref]

I. S. McDermid and J. B. Laudenslager, J. Quant Spectrosc. Radiat. Transfer 27, 483 (1982).
[Crossref]

G. Agrawal, A. V. Lerberghe, P. Aubourg, and J. L. Boulnois, Opt. Lett. 7, 540 (1982).
[Crossref] [PubMed]

1981 (1)

D. G. Steel, R. C. Lind, and J. F. Lam, Phys. Rev. A 23, 2513 (1981).
[Crossref]

1980 (1)

1979 (2)

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, Appl. Phys. Lett. 35, 376 (1979).
[Crossref]

M. A. Yuratich, Mol. Phys. 38, 625 (1979).
[Crossref]

1978 (1)

1972 (1)

A. J. D. Farmer, V. Hasson, and R. W. Nicholls, J. Quant Spectrosc. Radiat. Transfer 12, 627 (1972).
[Crossref]

1968 (1)

D. C. Jain and R. C. Sahni, Trans. Faraday Soc. 64, 3169 (1968).
[Crossref]

1958 (1)

I. Deézi, Acta Phys. Hung. 9, 125 (1958).
[Crossref]

Abrams, R. L.

R. L. Abrams and R. C. Lind, Opt. Lett. 2, 94 (1978);Opt. Lett. 3, 205 (1978).
[Crossref]

See, for example, the solution of the two-level, saturable absorber model including effects of absorber motion in R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 240.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
[Crossref]

Agrawal, G.

Astill, A. G.

B. A. Mann, S. V. O’Leary, A. G. Astill, and D. A. Greenhalgh, Appl. Phys. B 54, 271 (1992).
[Crossref]

Attal-Trétout, B.

See, for example, B. Attal-Trétout, P. Monot, and K. Müiller-Dethlefs, Mol. Phys. 73, 1257 (1991);I. Aben, W. Ubachs, G. van der Zwan, and W. Hogervorst, “Polarization effects in resonant four-wave mixing processes,” submitted to Mol. Phys.
[Crossref]

Aubourg, P.

Baiamonte, V. D.

R. Engleman, P. E. Rouse, H. M. Peek, and V. D. Baiamonte, “Beta and gamma band systems of nitric oxide,” Rep. LA-4364 (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1969).

Boulnois, J. L.

Chou, M.-S.

M.-S. Chou, A. M. Dean, and D. Stern, J. Chem. Phys. 78, 5962 (1983).
[Crossref]

Dean, A. M.

M.-S. Chou, A. M. Dean, and D. Stern, J. Chem. Phys. 78, 5962 (1983).
[Crossref]

Deézi, I.

I. Deézi, Acta Phys. Hung. 9, 125 (1958).
[Crossref]

Dreier, T.

T. Dreier and D. J. Rakestraw, Appl. Phys. B 50, 479 (1990).
[Crossref]

T. Dreier and D. J. Rakestraw, Opt. Lett. 15, 72 (1990).
[Crossref] [PubMed]

D. J. Rakestraw, R. L. Farrow, and T. Dreier, Opt. Lett. 15, 709 (1990).
[Crossref] [PubMed]

R. L. Farrow, D. J. Rakestraw, R. L. Vander Wal, and T. Dreier, “Line intensities of resonant degenerate four-wave mixing in nitric oxide,” in Proceedings of the Tenth International Conference on Laser Spectroscopy, M. Ducloy, E. Giacobino, and G. Camy, eds. (World Scientific, Singapore, 1992), p. 472.

Engleman, R.

R. Engleman, P. E. Rouse, H. M. Peek, and V. D. Baiamonte, “Beta and gamma band systems of nitric oxide,” Rep. LA-4364 (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1969).

Ewart, P.

Farmer, A. J. D.

A. J. D. Farmer, V. Hasson, and R. W. Nicholls, J. Quant Spectrosc. Radiat. Transfer 12, 627 (1972).
[Crossref]

Farrow, R. L.

D. J. Rakestraw, R. L. Farrow, and T. Dreier, Opt. Lett. 15, 709 (1990).
[Crossref] [PubMed]

R. L. Farrow, D. J. Rakestraw, R. L. Vander Wal, and T. Dreier, “Line intensities of resonant degenerate four-wave mixing in nitric oxide,” in Proceedings of the Tenth International Conference on Laser Spectroscopy, M. Ducloy, E. Giacobino, and G. Camy, eds. (World Scientific, Singapore, 1992), p. 472.

Fayer, M. D.

T. S. Rose, W. L. Wilson, G. Wäckerle, and M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[Crossref]

Giuliano, C. R.

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, Appl. Phys. Lett. 35, 376 (1979).
[Crossref]

Greenhalgh, D. A.

B. A. Mann, S. V. O’Leary, A. G. Astill, and D. A. Greenhalgh, Appl. Phys. B 54, 271 (1992).
[Crossref]

Hasson, V.

A. J. D. Farmer, V. Hasson, and R. W. Nicholls, J. Quant Spectrosc. Radiat. Transfer 12, 627 (1972).
[Crossref]

Hesselink, L.

Hilborn, R. C.

R. C. Hilborn, Am. J. Phys. 50, 982 (1982).
[Crossref]

Jain, D. C.

D. C. Jain and R. C. Sahni, Trans. Faraday Soc. 64, 3169 (1968).
[Crossref]

Lam, J. F.

D. G. Steel, R. C. Lind, and J. F. Lam, Phys. Rev. A 23, 2513 (1981).
[Crossref]

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, Appl. Phys. Lett. 35, 376 (1979).
[Crossref]

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
[Crossref]

See, for example, the solution of the two-level, saturable absorber model including effects of absorber motion in R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 240.

Laudenslager, J. B.

I. S. McDermid and J. B. Laudenslager, J. Quant Spectrosc. Radiat. Transfer 27, 483 (1982).
[Crossref]

Laurendeau, N. M.

Lerberghe, A. V.

Levenson, M.

M. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1982), p. 73.

Liao, P. F.

See, for example, the solution of the two-level, saturable absorber model including effects of absorber motion in R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 240.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
[Crossref]

Lind, R. C.

D. G. Steel, R. C. Lind, and J. F. Lam, Phys. Rev. A 23, 2513 (1981).
[Crossref]

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, Appl. Phys. Lett. 35, 376 (1979).
[Crossref]

R. L. Abrams and R. C. Lind, Opt. Lett. 2, 94 (1978);Opt. Lett. 3, 205 (1978).
[Crossref]

See, for example, the solution of the two-level, saturable absorber model including effects of absorber motion in R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 240.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
[Crossref]

Lucht, R. P.

Magnusson, I.

Mann, B. A.

B. A. Mann, S. V. O’Leary, A. G. Astill, and D. A. Greenhalgh, Appl. Phys. B 54, 271 (1992).
[Crossref]

McDermid, I. S.

I. S. McDermid and J. B. Laudenslager, J. Quant Spectrosc. Radiat. Transfer 27, 483 (1982).
[Crossref]

Monot, P.

See, for example, B. Attal-Trétout, P. Monot, and K. Müiller-Dethlefs, Mol. Phys. 73, 1257 (1991);I. Aben, W. Ubachs, G. van der Zwan, and W. Hogervorst, “Polarization effects in resonant four-wave mixing processes,” submitted to Mol. Phys.
[Crossref]

Müiller-Dethlefs, K.

See, for example, B. Attal-Trétout, P. Monot, and K. Müiller-Dethlefs, Mol. Phys. 73, 1257 (1991);I. Aben, W. Ubachs, G. van der Zwan, and W. Hogervorst, “Polarization effects in resonant four-wave mixing processes,” submitted to Mol. Phys.
[Crossref]

Nicholls, R. W.

A. J. D. Farmer, V. Hasson, and R. W. Nicholls, J. Quant Spectrosc. Radiat. Transfer 12, 627 (1972).
[Crossref]

O’Leary, S. V.

B. A. Mann, S. V. O’Leary, A. G. Astill, and D. A. Greenhalgh, Appl. Phys. B 54, 271 (1992).
[Crossref]

P. Ewart and S. V. O’Leary, Opt. Lett. 11, 279 (1986).
[Crossref]

Peek, H. M.

R. Engleman, P. E. Rouse, H. M. Peek, and V. D. Baiamonte, “Beta and gamma band systems of nitric oxide,” Rep. LA-4364 (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1969).

Pender, J.

Rakestraw, D. J.

T. Dreier and D. J. Rakestraw, Opt. Lett. 15, 72 (1990).
[Crossref] [PubMed]

D. J. Rakestraw, R. L. Farrow, and T. Dreier, Opt. Lett. 15, 709 (1990).
[Crossref] [PubMed]

T. Dreier and D. J. Rakestraw, Appl. Phys. B 50, 479 (1990).
[Crossref]

R. L. Farrow, D. J. Rakestraw, R. L. Vander Wal, and T. Dreier, “Line intensities of resonant degenerate four-wave mixing in nitric oxide,” in Proceedings of the Tenth International Conference on Laser Spectroscopy, M. Ducloy, E. Giacobino, and G. Camy, eds. (World Scientific, Singapore, 1992), p. 472.

Rose, T. S.

T. S. Rose, W. L. Wilson, G. Wäckerle, and M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[Crossref]

Rouse, P. E.

R. Engleman, P. E. Rouse, H. M. Peek, and V. D. Baiamonte, “Beta and gamma band systems of nitric oxide,” Rep. LA-4364 (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1969).

Sahni, R. C.

D. C. Jain and R. C. Sahni, Trans. Faraday Soc. 64, 3169 (1968).
[Crossref]

Snowdon, P.

Steel, D. G.

D. G. Steel, R. C. Lind, and J. F. Lam, Phys. Rev. A 23, 2513 (1981).
[Crossref]

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, Appl. Phys. Lett. 35, 376 (1979).
[Crossref]

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
[Crossref]

See, for example, the solution of the two-level, saturable absorber model including effects of absorber motion in R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 240.

Stern, D.

M.-S. Chou, A. M. Dean, and D. Stern, J. Chem. Phys. 78, 5962 (1983).
[Crossref]

Sweeney, D. W.

Vander Wal, R. L.

R. L. Farrow, D. J. Rakestraw, R. L. Vander Wal, and T. Dreier, “Line intensities of resonant degenerate four-wave mixing in nitric oxide,” in Proceedings of the Tenth International Conference on Laser Spectroscopy, M. Ducloy, E. Giacobino, and G. Camy, eds. (World Scientific, Singapore, 1992), p. 472.

Wäckerle, G.

T. S. Rose, W. L. Wilson, G. Wäckerle, and M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[Crossref]

Wilson, W. L.

T. S. Rose, W. L. Wilson, G. Wäckerle, and M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[Crossref]

Yuratich, M. A.

M. A. Yuratich, Mol. Phys. 38, 625 (1979).
[Crossref]

Acta Phys. Hung. (1)

I. Deézi, Acta Phys. Hung. 9, 125 (1958).
[Crossref]

Am. J. Phys. (1)

R. C. Hilborn, Am. J. Phys. 50, 982 (1982).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

T. Dreier and D. J. Rakestraw, Appl. Phys. B 50, 479 (1990).
[Crossref]

B. A. Mann, S. V. O’Leary, A. G. Astill, and D. A. Greenhalgh, Appl. Phys. B 54, 271 (1992).
[Crossref]

Appl. Phys. Lett. (1)

D. G. Steel, R. C. Lind, J. F. Lam, and C. R. Giuliano, Appl. Phys. Lett. 35, 376 (1979).
[Crossref]

J. Chem. Phys. (2)

T. S. Rose, W. L. Wilson, G. Wäckerle, and M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[Crossref]

M.-S. Chou, A. M. Dean, and D. Stern, J. Chem. Phys. 78, 5962 (1983).
[Crossref]

J. Quant Spectrosc. Radiat. Transfer (2)

I. S. McDermid and J. B. Laudenslager, J. Quant Spectrosc. Radiat. Transfer 27, 483 (1982).
[Crossref]

A. J. D. Farmer, V. Hasson, and R. W. Nicholls, J. Quant Spectrosc. Radiat. Transfer 12, 627 (1972).
[Crossref]

Mol. Phys. (2)

See, for example, B. Attal-Trétout, P. Monot, and K. Müiller-Dethlefs, Mol. Phys. 73, 1257 (1991);I. Aben, W. Ubachs, G. van der Zwan, and W. Hogervorst, “Polarization effects in resonant four-wave mixing processes,” submitted to Mol. Phys.
[Crossref]

M. A. Yuratich, Mol. Phys. 38, 625 (1979).
[Crossref]

Opt. Lett. (7)

Phys. Rev. A (1)

D. G. Steel, R. C. Lind, and J. F. Lam, Phys. Rev. A 23, 2513 (1981).
[Crossref]

Trans. Faraday Soc. (1)

D. C. Jain and R. C. Sahni, Trans. Faraday Soc. 64, 3169 (1968).
[Crossref]

Other (5)

R. Engleman, P. E. Rouse, H. M. Peek, and V. D. Baiamonte, “Beta and gamma band systems of nitric oxide,” Rep. LA-4364 (Los Alamos Scientific Laboratory, Los Alamos, N.M., 1969).

R. L. Farrow, D. J. Rakestraw, R. L. Vander Wal, and T. Dreier, “Line intensities of resonant degenerate four-wave mixing in nitric oxide,” in Proceedings of the Tenth International Conference on Laser Spectroscopy, M. Ducloy, E. Giacobino, and G. Camy, eds. (World Scientific, Singapore, 1992), p. 472.

R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant degenerate four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 211.
[Crossref]

M. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1982), p. 73.

See, for example, the solution of the two-level, saturable absorber model including effects of absorber motion in R. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P. F. Liao, “Phase conjugation and high-resolution spectroscopy by resonant four-wave mixing,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 240.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of experiment to observe DFWM in the A2Σ+(υ′ = 0) ← X2Π (A = 0) band of NO. The quarter-wave (λ/4) plate shown in front of the pump-beam retroreflection mirror was used for a crossed-pump-polarization configuration. In most measurements this optic was not present and the beam and detection polarizations were all horizontal (see text). The photoelastic modulator was used to minimize variations in laser pulse energy during frequency scans. PMT, photomultiplier tube.

Fig. 2
Fig. 2

Experimental DFWM spectrum displaying the O12 and the P2 + P12 branches of the A2Σ+(υ′ = 0) ← X2Π(υ″ = 0) band of NO. The rotational transitions are labeled (N). The spectrum was obtained at room temperature from 0.05 Torr of NO and 0.150 Torr of air in a cell, by averaging the results of 10 laser pulses per laser-frequency step.

Fig. 3
Fig. 3

Comparison of experimental DFWM and LIF-excitation spectra of the O12 branch of NO. The DFWM line intensity ratios vary approximately as the square of the corresponding LIF ratios, which are proportional to absorption strength. The differences in linewidths result from the presence of Doppler broadening in the LIF spectrum and the Doppler-free nature of the DFWM spectrum.

Fig. 4
Fig. 4

Experimental DFWM spectrum displaying selected rotational transitions of the O12 branch. Two different laser intensities were used to acquire the upper and lower spectra. Note that the relative peak intensities within a spectrum depend significantly on the laser intensity. Note that the frequency scale is not continuous throughout the spectra.

Fig. 5
Fig. 5

Plots of the left-hand side of Eq. (14) versus ln(μN) using integrated DFWM line intensities measured in the O12 branch; transition dipole moments are from Ref. 20, and term energies are from Ref. 18. The slope of a linear least-squares fit to the measurements allows the best-fit exponent of μ to be determined. These data were taken in separate scans by using laser intensities of 0.15, 6.7, and 90 MW/cm2 cm−1 (from top to bottom).

Fig. 6
Fig. 6

Comparison of experimental and theoretical values for x that best describe O12-branch line intensities IN according to the power law μNxnN2 for various laser intensities. Limiting values at high laser intensities are indicated by arrows for both theory and experiment. The experimental limit was measured by greatly downcollimating the pump laser beam to a diameter that was not measured precisely (≪1 mm).

Fig. 7
Fig. 7

Comparison of experimental and theoretical temperatures obtained by assuming INμN2nN2 and by varying nN(T) for best fit. The IN are experimental O12 line intensities or theoretical values given by Eq. (9).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I c = R I p = | β sin γ L γ cos γ L + α sin γ L | 2 I p .
α = α 0 1 1 + δ 2 1 + 2 I / I sat ( 1 + 4 I / I sat ) 3 / 2 ,
β = α 0 i + δ 1 + δ 2 2 I / I sat ( 1 + 4 I / I sat ) 3 / 2 ;
α 0 = ω Δ n μ 12 2 T 2 / 2 c ɛ 0 ,
I sat = ( ɛ 0 c 2 / 2 T 1 T 2 μ 12 2 ) ( 1 + δ 2 ) = I sat 0 ( 1 + δ 2 ) ,
I c | β γ L | γ 2 2 I p = | β L | 2 I p = α 0 2 1 1 + δ 2 L 2 4 ( I / I sat ) 2 ( 1 + 4 I / I sat ) 3 I p .
I c α 0 2 L 2 4 ( I / I sat ) 2 I p μ 12 8 T 1 2 T 2 4 I 3 ( I I sat ) ,
I c α 0 2 L 2 ( I sat / 16 I ) I p μ 12 2 T 1 1 T 2 I 0 ( I I sat ) ,
I c int = 3 π 2 T 2 α 0 2 L 2 4 ( I / I sat 0 ) 2 ( 1 + 4 I / I sat 0 ) 5 / 2 I p .
I c int α 0 2 T 2 ( I / I sat 0 ) 2 I p μ 12 8 T 1 2 T 2 3 I 3 ( I I sat ) ,
I c int α 0 2 T 2 ( I sat 0 / I ) 1 / 2 I p μ 12 3 T 1 1 / 2 T 2 1 / 2 I 1 / 2 ( I I sat ) ,
I N n N μ N x ,
n N g N exp ( E N / k T ) .
ln ( I N g N ) + E N k T = x 2 ln μ N + const .
μ 12 2 = 3 2 e 2 ω 0 m f 12 ,

Metrics