Abstract

Alternative (nondiffraction) methods for the characterization of photorefractive crystals, namely, a stationary holographic current and non-steady-state photo-emf are considered. The sign of the dominating photocarriers, their average lifetimes and transport lengths, the characteristic time for hologram formation, and concentration of trapping centers were estimated for BSO and GaAs:Cr crystals. These novel techniques can be used for the characterization of centrosymmetric photoconductive crystals as well.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
    [Crossref]
  2. A. Krumins and P. Günter, “Holographic currents in reduced KNbO3crystals,” Phys. Status Solidi A 63, K111 (1981).
    [Crossref]
  3. G. S. Trofimov and S. I. Stepanov, “Steady-state holographic currents in (1988). Bi12SiO20,” Sov. Phys. Solid State 30, 534 (1988).
  4. G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559 (1986); M. P. Petrov, S. I. Stepanov, and G. S. Trofimov, “Time-varying in a nonuniformly illuminated photoconductor,” Sov. Tech. Phys. Lett. 12, 379 (1986).
  5. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo- induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216 (1990).
    [Crossref]
  6. V. L. Vinetskii and N. V. Kukhtarev, “Anomalous photovoltage and energy transfer during grating holographic recording in semiconductors,” So. Tech. Phys. Lett. 1, 177 (1975).
  7. S. I. Stepanov and G. S. Trofimov, “Transient in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49, (1989).
  8. S. I. Stepanov and I. A. Sokolov, “Adaptive interferometers using photorefractive crystals,” Proceedings of the Second International Conference on Holographic Systems, Components and Applications (Institution of Electrical Engineers, London, 1989), p. 95.
  9. I. A. Sokolov and S. I. Stepanov, “Non-steady-state photo-voltage in crystals with long photoconductivity relaxation times,” Electron. Lett. 26, 1275 (1990).
    [Crossref]
  10. G. LeSaux and A. Brun, “Photorefractive material response to short pulse illuminations,” IEEE J. Quantum Electron. QE-23, 1680 (1987).
    [Crossref]
  11. S. I. Stepanov, “Light refraction in crystals with bipolar photoconductivity,” Sov. Phys. Tech. Phys. 27, 1300 (1982); G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363 (1986); F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole–electron competition in photorefractive gratings,” Opt. Lett. 11, 312 (1986).
    [Crossref]

1990 (2)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo- induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216 (1990).
[Crossref]

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photo-voltage in crystals with long photoconductivity relaxation times,” Electron. Lett. 26, 1275 (1990).
[Crossref]

1989 (1)

S. I. Stepanov and G. S. Trofimov, “Transient in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49, (1989).

1988 (1)

G. S. Trofimov and S. I. Stepanov, “Steady-state holographic currents in (1988). Bi12SiO20,” Sov. Phys. Solid State 30, 534 (1988).

1987 (1)

G. LeSaux and A. Brun, “Photorefractive material response to short pulse illuminations,” IEEE J. Quantum Electron. QE-23, 1680 (1987).
[Crossref]

1986 (1)

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559 (1986); M. P. Petrov, S. I. Stepanov, and G. S. Trofimov, “Time-varying in a nonuniformly illuminated photoconductor,” Sov. Tech. Phys. Lett. 12, 379 (1986).

1982 (1)

S. I. Stepanov, “Light refraction in crystals with bipolar photoconductivity,” Sov. Phys. Tech. Phys. 27, 1300 (1982); G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363 (1986); F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole–electron competition in photorefractive gratings,” Opt. Lett. 11, 312 (1986).
[Crossref]

1981 (1)

A. Krumins and P. Günter, “Holographic currents in reduced KNbO3crystals,” Phys. Status Solidi A 63, K111 (1981).
[Crossref]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[Crossref]

1975 (1)

V. L. Vinetskii and N. V. Kukhtarev, “Anomalous photovoltage and energy transfer during grating holographic recording in semiconductors,” So. Tech. Phys. Lett. 1, 177 (1975).

Brun, A.

G. LeSaux and A. Brun, “Photorefractive material response to short pulse illuminations,” IEEE J. Quantum Electron. QE-23, 1680 (1987).
[Crossref]

Günter, P.

A. Krumins and P. Günter, “Holographic currents in reduced KNbO3crystals,” Phys. Status Solidi A 63, K111 (1981).
[Crossref]

Krumins, A.

A. Krumins and P. Günter, “Holographic currents in reduced KNbO3crystals,” Phys. Status Solidi A 63, K111 (1981).
[Crossref]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[Crossref]

V. L. Vinetskii and N. V. Kukhtarev, “Anomalous photovoltage and energy transfer during grating holographic recording in semiconductors,” So. Tech. Phys. Lett. 1, 177 (1975).

LeSaux, G.

G. LeSaux and A. Brun, “Photorefractive material response to short pulse illuminations,” IEEE J. Quantum Electron. QE-23, 1680 (1987).
[Crossref]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[Crossref]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[Crossref]

Petrov, M. P.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo- induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216 (1990).
[Crossref]

Sokolov, I. A.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo- induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216 (1990).
[Crossref]

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photo-voltage in crystals with long photoconductivity relaxation times,” Electron. Lett. 26, 1275 (1990).
[Crossref]

S. I. Stepanov and I. A. Sokolov, “Adaptive interferometers using photorefractive crystals,” Proceedings of the Second International Conference on Holographic Systems, Components and Applications (Institution of Electrical Engineers, London, 1989), p. 95.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[Crossref]

Stepanov, S. I.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo- induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216 (1990).
[Crossref]

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photo-voltage in crystals with long photoconductivity relaxation times,” Electron. Lett. 26, 1275 (1990).
[Crossref]

S. I. Stepanov and G. S. Trofimov, “Transient in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49, (1989).

G. S. Trofimov and S. I. Stepanov, “Steady-state holographic currents in (1988). Bi12SiO20,” Sov. Phys. Solid State 30, 534 (1988).

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559 (1986); M. P. Petrov, S. I. Stepanov, and G. S. Trofimov, “Time-varying in a nonuniformly illuminated photoconductor,” Sov. Tech. Phys. Lett. 12, 379 (1986).

S. I. Stepanov, “Light refraction in crystals with bipolar photoconductivity,” Sov. Phys. Tech. Phys. 27, 1300 (1982); G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363 (1986); F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole–electron competition in photorefractive gratings,” Opt. Lett. 11, 312 (1986).
[Crossref]

S. I. Stepanov and I. A. Sokolov, “Adaptive interferometers using photorefractive crystals,” Proceedings of the Second International Conference on Holographic Systems, Components and Applications (Institution of Electrical Engineers, London, 1989), p. 95.

Trofimov, G. S.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo- induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216 (1990).
[Crossref]

S. I. Stepanov and G. S. Trofimov, “Transient in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49, (1989).

G. S. Trofimov and S. I. Stepanov, “Steady-state holographic currents in (1988). Bi12SiO20,” Sov. Phys. Solid State 30, 534 (1988).

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559 (1986); M. P. Petrov, S. I. Stepanov, and G. S. Trofimov, “Time-varying in a nonuniformly illuminated photoconductor,” Sov. Tech. Phys. Lett. 12, 379 (1986).

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[Crossref]

V. L. Vinetskii and N. V. Kukhtarev, “Anomalous photovoltage and energy transfer during grating holographic recording in semiconductors,” So. Tech. Phys. Lett. 1, 177 (1975).

Electron. Lett. (1)

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photo-voltage in crystals with long photoconductivity relaxation times,” Electron. Lett. 26, 1275 (1990).
[Crossref]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949 (1979).
[Crossref]

IEEE J. Quantum Electron. (1)

G. LeSaux and A. Brun, “Photorefractive material response to short pulse illuminations,” IEEE J. Quantum Electron. QE-23, 1680 (1987).
[Crossref]

J. Appl. Phys. (1)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo- induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216 (1990).
[Crossref]

Phys. Status Solidi A (1)

A. Krumins and P. Günter, “Holographic currents in reduced KNbO3crystals,” Phys. Status Solidi A 63, K111 (1981).
[Crossref]

So. Tech. Phys. Lett. (1)

V. L. Vinetskii and N. V. Kukhtarev, “Anomalous photovoltage and energy transfer during grating holographic recording in semiconductors,” So. Tech. Phys. Lett. 1, 177 (1975).

Sov. Phys. Solid State (3)

S. I. Stepanov and G. S. Trofimov, “Transient in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49, (1989).

G. S. Trofimov and S. I. Stepanov, “Steady-state holographic currents in (1988). Bi12SiO20,” Sov. Phys. Solid State 30, 534 (1988).

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559 (1986); M. P. Petrov, S. I. Stepanov, and G. S. Trofimov, “Time-varying in a nonuniformly illuminated photoconductor,” Sov. Tech. Phys. Lett. 12, 379 (1986).

Sov. Phys. Tech. Phys. (1)

S. I. Stepanov, “Light refraction in crystals with bipolar photoconductivity,” Sov. Phys. Tech. Phys. 27, 1300 (1982); G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363 (1986); F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole–electron competition in photorefractive gratings,” Opt. Lett. 11, 312 (1986).
[Crossref]

Other (1)

S. I. Stepanov and I. A. Sokolov, “Adaptive interferometers using photorefractive crystals,” Proceedings of the Second International Conference on Holographic Systems, Components and Applications (Institution of Electrical Engineers, London, 1989), p. 95.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental arrangements for observation of (a) a stationary holographic current (U0 is the external electric voltage) and (b) the non-steady-state photo-emf (the resistance of the illuminated crystal is much greater than load resistance R).

Fig. 2
Fig. 2

Efficiency of the grating (η) (curves 1) measured with a conventional holographic technique and modulation depth of the electric field (m′/m); (curves 2) measured with the stationary holographic current technique for BSO crystal. (a) λ = 442 nm, K = 7.5 × 103 mm−1. (b) λ = 488 nm, K = 6.3 × 103 mm−1.

Fig. 3
Fig. 3

Typical transfer function of the non-steady-state photo-emf observed in BSO for λ = 633 nm (E0 = 0, Λ = 20 μm, m = 0.9, I0 = 40 mW/mm2, Δ = 0.3 rad).

Fig. 4
Fig. 4

Experimental dependences of the amplitude of the non-steady-state photo-emf Jω (curve 1) and of the cutoff frequency ω0/2π (curve 2) on spatial frequency K (BSO, λ = 442 nm, m = 0.9, I0 = 0.01 mW/mm2, Δ = 0.5 rad).

Fig. 5
Fig. 5

Experimental dependence of the amplitude of the first harmonic of the non-steady-state photo-emf on the external electric field (BSO, λ = 633 nm, m = 0.9, Λ = 16 μm, ω/2π = 1 kHz, Δ = 1 rad).

Fig. 6
Fig. 6

Experimental dependence of the Jω/K ratio on spatial frequency K observed in GaAs: Cr for λ = 1.15 μm(ω/2π = 1 kHz, I0 = 1 mW/mm2, Δ = 0.5 rad).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

r = J H J R + J S = ( 1 - m 2 ) 1 / 2 .
m = E sc / E 0 = m / [ 1 + ( E 0 / E q ) 2 ] 1 / 2 ,
E q = e N A 0 K
J ( t ) = J ω cos ( ω t + ψ ) ,
J ω = Δ m 2 S σ 0 E D 2 ω τ M [ 1 + ( ω / ω 0 ) 2 ] 1 / 2 ,
ψ = arctan ( ω 0 / ω ) .
ω 0 = τ sc - 1 = [ τ M ( 1 + K 2 L D 2 ) ] - 1
J ω = Δ m 2 S σ 0 E D 2 ω τ M ( 1 - ω 2 τ τ M ) 2 + ω 2 ( τ M ( 1 + K 2 L D 2 ) + τ ) 2 .
J ω = Δ m 2 σ 0 S 2 [ E D ( 1 + K 2 L D 2 ) - K L 0 E 0 ] [ ( 1 + K 2 L D 2 ) 2 + K 2 L 0 2 ] ,
E 0 = E D ( 1 + K 2 L D 2 ) 1 / 2 / ( K L D ) ,
L D = ( k B T 0 / e 2 N A ) 1 / 2
L 0 = E 0 0 / e N A
J ω = Δ m 2 S 2 ( σ e 1 + K 2 L D e 2 - σ h 1 + K 2 L D h 2 ) × E D 1 + K 2 L D 2 ω / ω 0 ( 1 + ω 2 / ω 0 2 ) 1 / 2 .
ω 0 = ( 1 + K 2 L D 2 ) 0 [ σ e ( 1 + K 2 L D e 2 ) + σ h ( 1 + K 2 L D h 2 ) ] .

Metrics