Abstract

The high-frequency intensity noise spectra of mid-infrared diode lasers have been investigated. Theoretical estimates are compared with experimental results of spectral noise measurements. Lasers with different lateral structures showed comparable characteristics, although at different noise levels. Relative intensity noise as structures 10−17 Hz−1 was observed; this is close to the quantum noise limit for detection and hence suitable for small as trace-gas analysis systems.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Grisar, G. Schmidtke, M. Tacke, and G. Restelli, eds., Monitoring of Gaseous Pollutants by Tunable Diode Lasers, Proceedings of the International Symposium, Freiburg, Germany, October 1988 (Kluwer Academic, Dordrecht, 1989).
    [CrossRef]
  2. M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1526 (1985).
    [CrossRef]
  3. G. C. Bjorklund, “Frequency-modulation spectroscopy: a novel method for measuring weak absorption and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef]
  4. G. Janik, C. Carlisle, and T. F. Gallagher, “Frequency modulation spectroscopy with second harmonic detection,” Appl. Opt. 24, 3318–3319 (1985).
    [CrossRef] [PubMed]
  5. D. E. Cooper and J. P. Watjen, “Two-tone optical heterodyne spectroscopy with a tunable lead-salt diode laser,” Opt. Lett. 11, 606–608 (1986).
    [CrossRef] [PubMed]
  6. D. E. Cooper and C. B. Carlisle, “High-sensitivity FM spectroscopy with a lead-salt diode laser,” Opt. Lett. 13, 719–721 (1988).
    [CrossRef] [PubMed]
  7. C. B. Carlisle, D. E. Cooper, and H. Preier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989).
    [CrossRef] [PubMed]
  8. P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1988).
    [CrossRef]
  9. D. E. Cooper and R. E. Warren, “Two-tone optical heterodyne spectroscopy with diode lasers: theory of line shapes and experimental results,” J. Opt. Soc. Am. B 4, 470–480 (1987).
    [CrossRef]
  10. H. Jäckel and G. Guekos, “High-frequency intensity noise spectra of axial mode groups in the radiation from cw GaAlAs diode lasers,” Opt. Quantum Electron. 9, 233–239 (1977).
    [CrossRef]
  11. L. Figueroa, C. W. Slayman, and H.-W. Yen, “High-frequency characteristics of GaAlAs-injection lasers,” IEEE J. Quantum Electron. QE-18, 1718–1727 (1982).
    [CrossRef]
  12. Y. Yamamoto, S. Saito, and T. Mukai, “AM and FM quantum noise in semiconductor lasers—Part II: Comparison of theoretical and experimental results for AlGaAs lasers,” IEEE J. Quantum Electron. QE-19, 47–58 (1983).
    [CrossRef]
  13. R. S. Eng, A. W. Mantz, and T. R. Todd, “Low-frequency noise characteristics of Pb-salt semiconductor lasers,” Appl. Opt. 18, 1088–1091 (1979).
    [CrossRef] [PubMed]
  14. H. Fischer, H. Wolf, B. Halford, and M. Tacke, “Low-frequency amplitude noise characteristics of lead-salt diode lasers by molecular beam epitaxy,” Infrared Phys. (to be published).
  15. C. N. Harward and J. M. Hall, “Optical feedback effects on the performance of Pb1−x Snx Se semiconductor lasers,” Appl. Opt. 18, 3978–3983 (1979).
    [CrossRef] [PubMed]
  16. P. Werle, F. Slemr, and M. Gehrtz, “Wide-band noise characteristics of a lead-salt diode laser: possibility of quantum limited TDLAS performance,” Appl. Opt. 28, 1638–1642 (1989).
    [CrossRef] [PubMed]
  17. B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, and M. Tacke, “Near-room-temperature operation of Pb1−x Srx Se infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
    [CrossRef]
  18. K.-H. Schlereth, B. Spanger, H. Böttner, A. Lambrecht, and M. Tacke, “Buried waveguide double-heterostructure PbEuSe-lasers grown by MBE,” Infrared Phys. 20, 449–454 (1990).
    [CrossRef]
  19. Y. Shani, A. Katzir, M. Tacke, and H. M. Preier, “PbSnSe/PbEuSnSe corrugated diode lasers,” IEEE J. Quantum Electron. 25, 1828–1843 (1989).
    [CrossRef]
  20. K.-H. Schlereth, H. Böttner, and M. Tacke, “‘Mushroom’ double-channel double-heterostructure lead chalcogenide lasers made by chemical etching,” Appl. Phys. Lett. 56, 2169–2171 (1990).
    [CrossRef]
  21. D. E. McCumber, “Intensity fluctuations in the output of cw laser oscillators. 1,” Phys. Rev. 141, 306–322 (1966).
    [CrossRef]
  22. H. Haug, “Quantum-mechanical rate equations for semiconductor lasers,” Phys. Rev. 184, 338–348 (1969).
    [CrossRef]
  23. D. J. Morgan and M. J. Adams, “Quantum-noise in semiconductor lasers,” Phys. Status Solidi A 11, 243–253 (1972).
    [CrossRef]
  24. Y. Yamamoto, “AM and FM quantum noise in semiconductor lasers—Part I: Theoretical analysis,” IEEE J. Quantum Electron. QE-19, 34–46 (1983).
    [CrossRef]
  25. G. Arnold and K. Petermann, “Intrinsic noise in semiconductor lasers in optical communication systems,” Opt. Quantum Electron. 12, 207–219 (1980).
    [CrossRef]
  26. T. Ito, S. Machida, K. Nawata, and J. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE J. Quantum Electron. QE-13, 574–579 (1977).
    [CrossRef]
  27. R. Schimpe, “Intensity noise associated with the lasing mode of a (GaAl)As diode laser,” IEEE J. Quantum Electron. QE-19, 895–897 (1983).
    [CrossRef]
  28. M. Ohtsu and Y. Teramachi, “Analyses of mode partition and mode hopping in semiconductor lasers,” IEEE J. Quantum Electron. 25, 31–38 (1989).
    [CrossRef]
  29. H. Kressel and J. K. Butler, Semiconductor Lasers and Heterojunction LEDs (Academic, Orlando, 1977), Chap. 17, p. 556.
  30. H. Jäckel, “Lichtemissionsrauschen und dynamisches Verhalten von GaAlAs-Heterostruktur-Diodenlasern im Frequenzbereich von 10 MHz bis 8 GHz,” Ph.D. dissertation (ETH Zürich, Switzerland, 1980), Chap. 3, pp. 66–125.
  31. T. Ikegami and Y. Suematsu, “Resonance-like characteristics of the direct modulation of a junction laser,” Proc. IEEE 55, 122–123 (1967).
    [CrossRef]
  32. T. L. Paoli and J. E. Ripper, “Direct modulation of semiconductor lasers,” Proc. IEEE 58, 1457–1465 (1970).
    [CrossRef]
  33. K. Y. Lau and A. Yariv, “Ultra-high speed semiconductor lasers,” IEEE J. Quantum Electron. QE-21, 121–137 (1985).
  34. R. H. Dicke, “The measurement of thermal radiation at ultra-high frequencies,” Rev. Sci. Instrum. 17, 268–275 (1946).
    [CrossRef] [PubMed]
  35. Y. Yamada, “Theory of mode competition noise in semiconductor injection lasers,” IEEE J. Quantum Electron. QE-22, 1052–1059 (1986).
    [CrossRef]
  36. C. B. Su and R. Olshansky, “Carrier lifetime measurements for determination of recombination rates and doping levels of III–V semiconductor light sources,” Appl. Phys. Lett. 41, 833–835 (1982).
    [CrossRef]
  37. C. B. Su and R. Olshansky, “Measurements of the threshold carrier density of III–V semiconductor laser diodes,” Appl. Phys. Lett. 43, 856–858 (1983).
    [CrossRef]
  38. K.-H. Schlereth, “Bleisalzdiodenlaser mit verteilter Rückkopplung,” Diploma Thesis (University of Würzburg, Germany, 1987), Chap. 5.3, pp. 62–64.
  39. T. Andersson and S. Lundquist, “GHz optical communication experiments using lead-salt diodes in the 3.5–5.5μm wavelength region,” Opt. Quantum Electron. 19, 313–317 (1987).
    [CrossRef]

1990 (2)

K.-H. Schlereth, B. Spanger, H. Böttner, A. Lambrecht, and M. Tacke, “Buried waveguide double-heterostructure PbEuSe-lasers grown by MBE,” Infrared Phys. 20, 449–454 (1990).
[CrossRef]

K.-H. Schlereth, H. Böttner, and M. Tacke, “‘Mushroom’ double-channel double-heterostructure lead chalcogenide lasers made by chemical etching,” Appl. Phys. Lett. 56, 2169–2171 (1990).
[CrossRef]

1989 (4)

M. Ohtsu and Y. Teramachi, “Analyses of mode partition and mode hopping in semiconductor lasers,” IEEE J. Quantum Electron. 25, 31–38 (1989).
[CrossRef]

Y. Shani, A. Katzir, M. Tacke, and H. M. Preier, “PbSnSe/PbEuSnSe corrugated diode lasers,” IEEE J. Quantum Electron. 25, 1828–1843 (1989).
[CrossRef]

P. Werle, F. Slemr, and M. Gehrtz, “Wide-band noise characteristics of a lead-salt diode laser: possibility of quantum limited TDLAS performance,” Appl. Opt. 28, 1638–1642 (1989).
[CrossRef] [PubMed]

C. B. Carlisle, D. E. Cooper, and H. Preier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989).
[CrossRef] [PubMed]

1988 (3)

P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1988).
[CrossRef]

B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, and M. Tacke, “Near-room-temperature operation of Pb1−x Srx Se infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
[CrossRef]

D. E. Cooper and C. B. Carlisle, “High-sensitivity FM spectroscopy with a lead-salt diode laser,” Opt. Lett. 13, 719–721 (1988).
[CrossRef] [PubMed]

1987 (2)

D. E. Cooper and R. E. Warren, “Two-tone optical heterodyne spectroscopy with diode lasers: theory of line shapes and experimental results,” J. Opt. Soc. Am. B 4, 470–480 (1987).
[CrossRef]

T. Andersson and S. Lundquist, “GHz optical communication experiments using lead-salt diodes in the 3.5–5.5μm wavelength region,” Opt. Quantum Electron. 19, 313–317 (1987).
[CrossRef]

1986 (2)

Y. Yamada, “Theory of mode competition noise in semiconductor injection lasers,” IEEE J. Quantum Electron. QE-22, 1052–1059 (1986).
[CrossRef]

D. E. Cooper and J. P. Watjen, “Two-tone optical heterodyne spectroscopy with a tunable lead-salt diode laser,” Opt. Lett. 11, 606–608 (1986).
[CrossRef] [PubMed]

1985 (3)

1983 (4)

R. Schimpe, “Intensity noise associated with the lasing mode of a (GaAl)As diode laser,” IEEE J. Quantum Electron. QE-19, 895–897 (1983).
[CrossRef]

C. B. Su and R. Olshansky, “Measurements of the threshold carrier density of III–V semiconductor laser diodes,” Appl. Phys. Lett. 43, 856–858 (1983).
[CrossRef]

Y. Yamamoto, “AM and FM quantum noise in semiconductor lasers—Part I: Theoretical analysis,” IEEE J. Quantum Electron. QE-19, 34–46 (1983).
[CrossRef]

Y. Yamamoto, S. Saito, and T. Mukai, “AM and FM quantum noise in semiconductor lasers—Part II: Comparison of theoretical and experimental results for AlGaAs lasers,” IEEE J. Quantum Electron. QE-19, 47–58 (1983).
[CrossRef]

1982 (2)

L. Figueroa, C. W. Slayman, and H.-W. Yen, “High-frequency characteristics of GaAlAs-injection lasers,” IEEE J. Quantum Electron. QE-18, 1718–1727 (1982).
[CrossRef]

C. B. Su and R. Olshansky, “Carrier lifetime measurements for determination of recombination rates and doping levels of III–V semiconductor light sources,” Appl. Phys. Lett. 41, 833–835 (1982).
[CrossRef]

1980 (2)

G. Arnold and K. Petermann, “Intrinsic noise in semiconductor lasers in optical communication systems,” Opt. Quantum Electron. 12, 207–219 (1980).
[CrossRef]

G. C. Bjorklund, “Frequency-modulation spectroscopy: a novel method for measuring weak absorption and dispersions,” Opt. Lett. 5, 15–17 (1980).
[CrossRef]

1979 (2)

1977 (2)

H. Jäckel and G. Guekos, “High-frequency intensity noise spectra of axial mode groups in the radiation from cw GaAlAs diode lasers,” Opt. Quantum Electron. 9, 233–239 (1977).
[CrossRef]

T. Ito, S. Machida, K. Nawata, and J. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE J. Quantum Electron. QE-13, 574–579 (1977).
[CrossRef]

1972 (1)

D. J. Morgan and M. J. Adams, “Quantum-noise in semiconductor lasers,” Phys. Status Solidi A 11, 243–253 (1972).
[CrossRef]

1970 (1)

T. L. Paoli and J. E. Ripper, “Direct modulation of semiconductor lasers,” Proc. IEEE 58, 1457–1465 (1970).
[CrossRef]

1969 (1)

H. Haug, “Quantum-mechanical rate equations for semiconductor lasers,” Phys. Rev. 184, 338–348 (1969).
[CrossRef]

1967 (1)

T. Ikegami and Y. Suematsu, “Resonance-like characteristics of the direct modulation of a junction laser,” Proc. IEEE 55, 122–123 (1967).
[CrossRef]

1966 (1)

D. E. McCumber, “Intensity fluctuations in the output of cw laser oscillators. 1,” Phys. Rev. 141, 306–322 (1966).
[CrossRef]

1946 (1)

R. H. Dicke, “The measurement of thermal radiation at ultra-high frequencies,” Rev. Sci. Instrum. 17, 268–275 (1946).
[CrossRef] [PubMed]

Adams, M. J.

D. J. Morgan and M. J. Adams, “Quantum-noise in semiconductor lasers,” Phys. Status Solidi A 11, 243–253 (1972).
[CrossRef]

Andersson, T.

T. Andersson and S. Lundquist, “GHz optical communication experiments using lead-salt diodes in the 3.5–5.5μm wavelength region,” Opt. Quantum Electron. 19, 313–317 (1987).
[CrossRef]

Arnold, G.

G. Arnold and K. Petermann, “Intrinsic noise in semiconductor lasers in optical communication systems,” Opt. Quantum Electron. 12, 207–219 (1980).
[CrossRef]

Bjorklund, G. C.

Böttner, H.

K.-H. Schlereth, B. Spanger, H. Böttner, A. Lambrecht, and M. Tacke, “Buried waveguide double-heterostructure PbEuSe-lasers grown by MBE,” Infrared Phys. 20, 449–454 (1990).
[CrossRef]

K.-H. Schlereth, H. Böttner, and M. Tacke, “‘Mushroom’ double-channel double-heterostructure lead chalcogenide lasers made by chemical etching,” Appl. Phys. Lett. 56, 2169–2171 (1990).
[CrossRef]

B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, and M. Tacke, “Near-room-temperature operation of Pb1−x Srx Se infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
[CrossRef]

Bräuchle, C.

P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1988).
[CrossRef]

Butler, J. K.

H. Kressel and J. K. Butler, Semiconductor Lasers and Heterojunction LEDs (Academic, Orlando, 1977), Chap. 17, p. 556.

Carlisle, C.

Carlisle, C. B.

Cooper, D. E.

Dicke, R. H.

R. H. Dicke, “The measurement of thermal radiation at ultra-high frequencies,” Rev. Sci. Instrum. 17, 268–275 (1946).
[CrossRef] [PubMed]

Eng, R. S.

Figueroa, L.

L. Figueroa, C. W. Slayman, and H.-W. Yen, “High-frequency characteristics of GaAlAs-injection lasers,” IEEE J. Quantum Electron. QE-18, 1718–1727 (1982).
[CrossRef]

Fischer, H.

H. Fischer, H. Wolf, B. Halford, and M. Tacke, “Low-frequency amplitude noise characteristics of lead-salt diode lasers by molecular beam epitaxy,” Infrared Phys. (to be published).

Gallagher, T. F.

Gehrtz, M.

Guekos, G.

H. Jäckel and G. Guekos, “High-frequency intensity noise spectra of axial mode groups in the radiation from cw GaAlAs diode lasers,” Opt. Quantum Electron. 9, 233–239 (1977).
[CrossRef]

Halford, B.

H. Fischer, H. Wolf, B. Halford, and M. Tacke, “Low-frequency amplitude noise characteristics of lead-salt diode lasers by molecular beam epitaxy,” Infrared Phys. (to be published).

Hall, J. M.

Harward, C. N.

Haug, H.

H. Haug, “Quantum-mechanical rate equations for semiconductor lasers,” Phys. Rev. 184, 338–348 (1969).
[CrossRef]

Ikegami, J.

T. Ito, S. Machida, K. Nawata, and J. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE J. Quantum Electron. QE-13, 574–579 (1977).
[CrossRef]

Ikegami, T.

T. Ikegami and Y. Suematsu, “Resonance-like characteristics of the direct modulation of a junction laser,” Proc. IEEE 55, 122–123 (1967).
[CrossRef]

Ito, T.

T. Ito, S. Machida, K. Nawata, and J. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE J. Quantum Electron. QE-13, 574–579 (1977).
[CrossRef]

Jäckel, H.

H. Jäckel and G. Guekos, “High-frequency intensity noise spectra of axial mode groups in the radiation from cw GaAlAs diode lasers,” Opt. Quantum Electron. 9, 233–239 (1977).
[CrossRef]

H. Jäckel, “Lichtemissionsrauschen und dynamisches Verhalten von GaAlAs-Heterostruktur-Diodenlasern im Frequenzbereich von 10 MHz bis 8 GHz,” Ph.D. dissertation (ETH Zürich, Switzerland, 1980), Chap. 3, pp. 66–125.

Janik, G.

Katzir, A.

Y. Shani, A. Katzir, M. Tacke, and H. M. Preier, “PbSnSe/PbEuSnSe corrugated diode lasers,” IEEE J. Quantum Electron. 25, 1828–1843 (1989).
[CrossRef]

Kressel, H.

H. Kressel and J. K. Butler, Semiconductor Lasers and Heterojunction LEDs (Academic, Orlando, 1977), Chap. 17, p. 556.

Lambrecht, A.

K.-H. Schlereth, B. Spanger, H. Böttner, A. Lambrecht, and M. Tacke, “Buried waveguide double-heterostructure PbEuSe-lasers grown by MBE,” Infrared Phys. 20, 449–454 (1990).
[CrossRef]

B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, and M. Tacke, “Near-room-temperature operation of Pb1−x Srx Se infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
[CrossRef]

Lau, K. Y.

K. Y. Lau and A. Yariv, “Ultra-high speed semiconductor lasers,” IEEE J. Quantum Electron. QE-21, 121–137 (1985).

Lundquist, S.

T. Andersson and S. Lundquist, “GHz optical communication experiments using lead-salt diodes in the 3.5–5.5μm wavelength region,” Opt. Quantum Electron. 19, 313–317 (1987).
[CrossRef]

Machida, S.

T. Ito, S. Machida, K. Nawata, and J. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE J. Quantum Electron. QE-13, 574–579 (1977).
[CrossRef]

Mantz, A. W.

McCumber, D. E.

D. E. McCumber, “Intensity fluctuations in the output of cw laser oscillators. 1,” Phys. Rev. 141, 306–322 (1966).
[CrossRef]

Morgan, D. J.

D. J. Morgan and M. J. Adams, “Quantum-noise in semiconductor lasers,” Phys. Status Solidi A 11, 243–253 (1972).
[CrossRef]

Mukai, T.

Y. Yamamoto, S. Saito, and T. Mukai, “AM and FM quantum noise in semiconductor lasers—Part II: Comparison of theoretical and experimental results for AlGaAs lasers,” IEEE J. Quantum Electron. QE-19, 47–58 (1983).
[CrossRef]

Nawata, K.

T. Ito, S. Machida, K. Nawata, and J. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE J. Quantum Electron. QE-13, 574–579 (1977).
[CrossRef]

Ohtsu, M.

M. Ohtsu and Y. Teramachi, “Analyses of mode partition and mode hopping in semiconductor lasers,” IEEE J. Quantum Electron. 25, 31–38 (1989).
[CrossRef]

Olshansky, R.

C. B. Su and R. Olshansky, “Measurements of the threshold carrier density of III–V semiconductor laser diodes,” Appl. Phys. Lett. 43, 856–858 (1983).
[CrossRef]

C. B. Su and R. Olshansky, “Carrier lifetime measurements for determination of recombination rates and doping levels of III–V semiconductor light sources,” Appl. Phys. Lett. 41, 833–835 (1982).
[CrossRef]

Paoli, T. L.

T. L. Paoli and J. E. Ripper, “Direct modulation of semiconductor lasers,” Proc. IEEE 58, 1457–1465 (1970).
[CrossRef]

Petermann, K.

G. Arnold and K. Petermann, “Intrinsic noise in semiconductor lasers in optical communication systems,” Opt. Quantum Electron. 12, 207–219 (1980).
[CrossRef]

Preier, H.

Preier, H. M.

Y. Shani, A. Katzir, M. Tacke, and H. M. Preier, “PbSnSe/PbEuSnSe corrugated diode lasers,” IEEE J. Quantum Electron. 25, 1828–1843 (1989).
[CrossRef]

Ripper, J. E.

T. L. Paoli and J. E. Ripper, “Direct modulation of semiconductor lasers,” Proc. IEEE 58, 1457–1465 (1970).
[CrossRef]

Saito, S.

Y. Yamamoto, S. Saito, and T. Mukai, “AM and FM quantum noise in semiconductor lasers—Part II: Comparison of theoretical and experimental results for AlGaAs lasers,” IEEE J. Quantum Electron. QE-19, 47–58 (1983).
[CrossRef]

Schiessl, U.

B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, and M. Tacke, “Near-room-temperature operation of Pb1−x Srx Se infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
[CrossRef]

Schimpe, R.

R. Schimpe, “Intensity noise associated with the lasing mode of a (GaAl)As diode laser,” IEEE J. Quantum Electron. QE-19, 895–897 (1983).
[CrossRef]

Schlereth, K.-H.

K.-H. Schlereth, B. Spanger, H. Böttner, A. Lambrecht, and M. Tacke, “Buried waveguide double-heterostructure PbEuSe-lasers grown by MBE,” Infrared Phys. 20, 449–454 (1990).
[CrossRef]

K.-H. Schlereth, H. Böttner, and M. Tacke, “‘Mushroom’ double-channel double-heterostructure lead chalcogenide lasers made by chemical etching,” Appl. Phys. Lett. 56, 2169–2171 (1990).
[CrossRef]

K.-H. Schlereth, “Bleisalzdiodenlaser mit verteilter Rückkopplung,” Diploma Thesis (University of Würzburg, Germany, 1987), Chap. 5.3, pp. 62–64.

Shani, Y.

Y. Shani, A. Katzir, M. Tacke, and H. M. Preier, “PbSnSe/PbEuSnSe corrugated diode lasers,” IEEE J. Quantum Electron. 25, 1828–1843 (1989).
[CrossRef]

Slayman, C. W.

L. Figueroa, C. W. Slayman, and H.-W. Yen, “High-frequency characteristics of GaAlAs-injection lasers,” IEEE J. Quantum Electron. QE-18, 1718–1727 (1982).
[CrossRef]

Slemr, F.

P. Werle, F. Slemr, and M. Gehrtz, “Wide-band noise characteristics of a lead-salt diode laser: possibility of quantum limited TDLAS performance,” Appl. Opt. 28, 1638–1642 (1989).
[CrossRef] [PubMed]

P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1988).
[CrossRef]

Spanger, B.

K.-H. Schlereth, B. Spanger, H. Böttner, A. Lambrecht, and M. Tacke, “Buried waveguide double-heterostructure PbEuSe-lasers grown by MBE,” Infrared Phys. 20, 449–454 (1990).
[CrossRef]

B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, and M. Tacke, “Near-room-temperature operation of Pb1−x Srx Se infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
[CrossRef]

Su, C. B.

C. B. Su and R. Olshansky, “Measurements of the threshold carrier density of III–V semiconductor laser diodes,” Appl. Phys. Lett. 43, 856–858 (1983).
[CrossRef]

C. B. Su and R. Olshansky, “Carrier lifetime measurements for determination of recombination rates and doping levels of III–V semiconductor light sources,” Appl. Phys. Lett. 41, 833–835 (1982).
[CrossRef]

Suematsu, Y.

T. Ikegami and Y. Suematsu, “Resonance-like characteristics of the direct modulation of a junction laser,” Proc. IEEE 55, 122–123 (1967).
[CrossRef]

Tacke, M.

K.-H. Schlereth, B. Spanger, H. Böttner, A. Lambrecht, and M. Tacke, “Buried waveguide double-heterostructure PbEuSe-lasers grown by MBE,” Infrared Phys. 20, 449–454 (1990).
[CrossRef]

K.-H. Schlereth, H. Böttner, and M. Tacke, “‘Mushroom’ double-channel double-heterostructure lead chalcogenide lasers made by chemical etching,” Appl. Phys. Lett. 56, 2169–2171 (1990).
[CrossRef]

Y. Shani, A. Katzir, M. Tacke, and H. M. Preier, “PbSnSe/PbEuSnSe corrugated diode lasers,” IEEE J. Quantum Electron. 25, 1828–1843 (1989).
[CrossRef]

B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, and M. Tacke, “Near-room-temperature operation of Pb1−x Srx Se infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
[CrossRef]

H. Fischer, H. Wolf, B. Halford, and M. Tacke, “Low-frequency amplitude noise characteristics of lead-salt diode lasers by molecular beam epitaxy,” Infrared Phys. (to be published).

Teramachi, Y.

M. Ohtsu and Y. Teramachi, “Analyses of mode partition and mode hopping in semiconductor lasers,” IEEE J. Quantum Electron. 25, 31–38 (1989).
[CrossRef]

Todd, T. R.

Warren, R. E.

Watjen, J. P.

Werle, P.

P. Werle, F. Slemr, and M. Gehrtz, “Wide-band noise characteristics of a lead-salt diode laser: possibility of quantum limited TDLAS performance,” Appl. Opt. 28, 1638–1642 (1989).
[CrossRef] [PubMed]

P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1988).
[CrossRef]

Whittaker, E. A.

Wolf, H.

H. Fischer, H. Wolf, B. Halford, and M. Tacke, “Low-frequency amplitude noise characteristics of lead-salt diode lasers by molecular beam epitaxy,” Infrared Phys. (to be published).

Yamada, Y.

Y. Yamada, “Theory of mode competition noise in semiconductor injection lasers,” IEEE J. Quantum Electron. QE-22, 1052–1059 (1986).
[CrossRef]

Yamamoto, Y.

Y. Yamamoto, S. Saito, and T. Mukai, “AM and FM quantum noise in semiconductor lasers—Part II: Comparison of theoretical and experimental results for AlGaAs lasers,” IEEE J. Quantum Electron. QE-19, 47–58 (1983).
[CrossRef]

Y. Yamamoto, “AM and FM quantum noise in semiconductor lasers—Part I: Theoretical analysis,” IEEE J. Quantum Electron. QE-19, 34–46 (1983).
[CrossRef]

Yariv, A.

K. Y. Lau and A. Yariv, “Ultra-high speed semiconductor lasers,” IEEE J. Quantum Electron. QE-21, 121–137 (1985).

Yen, H.-W.

L. Figueroa, C. W. Slayman, and H.-W. Yen, “High-frequency characteristics of GaAlAs-injection lasers,” IEEE J. Quantum Electron. QE-18, 1718–1727 (1982).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (1)

P. Werle, F. Slemr, M. Gehrtz, and C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1988).
[CrossRef]

Appl. Phys. Lett. (4)

B. Spanger, U. Schiessl, A. Lambrecht, H. Böttner, and M. Tacke, “Near-room-temperature operation of Pb1−x Srx Se infrared diode lasers using molecular beam epitaxy growth techniques,” Appl. Phys. Lett. 53, 2582–2583 (1988).
[CrossRef]

K.-H. Schlereth, H. Böttner, and M. Tacke, “‘Mushroom’ double-channel double-heterostructure lead chalcogenide lasers made by chemical etching,” Appl. Phys. Lett. 56, 2169–2171 (1990).
[CrossRef]

C. B. Su and R. Olshansky, “Carrier lifetime measurements for determination of recombination rates and doping levels of III–V semiconductor light sources,” Appl. Phys. Lett. 41, 833–835 (1982).
[CrossRef]

C. B. Su and R. Olshansky, “Measurements of the threshold carrier density of III–V semiconductor laser diodes,” Appl. Phys. Lett. 43, 856–858 (1983).
[CrossRef]

IEEE J. Quantum Electron. (9)

Y. Yamada, “Theory of mode competition noise in semiconductor injection lasers,” IEEE J. Quantum Electron. QE-22, 1052–1059 (1986).
[CrossRef]

Y. Shani, A. Katzir, M. Tacke, and H. M. Preier, “PbSnSe/PbEuSnSe corrugated diode lasers,” IEEE J. Quantum Electron. 25, 1828–1843 (1989).
[CrossRef]

Y. Yamamoto, “AM and FM quantum noise in semiconductor lasers—Part I: Theoretical analysis,” IEEE J. Quantum Electron. QE-19, 34–46 (1983).
[CrossRef]

T. Ito, S. Machida, K. Nawata, and J. Ikegami, “Intensity fluctuations in each longitudinal mode of a multimode AlGaAs laser,” IEEE J. Quantum Electron. QE-13, 574–579 (1977).
[CrossRef]

R. Schimpe, “Intensity noise associated with the lasing mode of a (GaAl)As diode laser,” IEEE J. Quantum Electron. QE-19, 895–897 (1983).
[CrossRef]

M. Ohtsu and Y. Teramachi, “Analyses of mode partition and mode hopping in semiconductor lasers,” IEEE J. Quantum Electron. 25, 31–38 (1989).
[CrossRef]

K. Y. Lau and A. Yariv, “Ultra-high speed semiconductor lasers,” IEEE J. Quantum Electron. QE-21, 121–137 (1985).

L. Figueroa, C. W. Slayman, and H.-W. Yen, “High-frequency characteristics of GaAlAs-injection lasers,” IEEE J. Quantum Electron. QE-18, 1718–1727 (1982).
[CrossRef]

Y. Yamamoto, S. Saito, and T. Mukai, “AM and FM quantum noise in semiconductor lasers—Part II: Comparison of theoretical and experimental results for AlGaAs lasers,” IEEE J. Quantum Electron. QE-19, 47–58 (1983).
[CrossRef]

Infrared Phys. (1)

K.-H. Schlereth, B. Spanger, H. Böttner, A. Lambrecht, and M. Tacke, “Buried waveguide double-heterostructure PbEuSe-lasers grown by MBE,” Infrared Phys. 20, 449–454 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (3)

Opt. Quantum Electron. (3)

H. Jäckel and G. Guekos, “High-frequency intensity noise spectra of axial mode groups in the radiation from cw GaAlAs diode lasers,” Opt. Quantum Electron. 9, 233–239 (1977).
[CrossRef]

G. Arnold and K. Petermann, “Intrinsic noise in semiconductor lasers in optical communication systems,” Opt. Quantum Electron. 12, 207–219 (1980).
[CrossRef]

T. Andersson and S. Lundquist, “GHz optical communication experiments using lead-salt diodes in the 3.5–5.5μm wavelength region,” Opt. Quantum Electron. 19, 313–317 (1987).
[CrossRef]

Phys. Rev. (2)

D. E. McCumber, “Intensity fluctuations in the output of cw laser oscillators. 1,” Phys. Rev. 141, 306–322 (1966).
[CrossRef]

H. Haug, “Quantum-mechanical rate equations for semiconductor lasers,” Phys. Rev. 184, 338–348 (1969).
[CrossRef]

Phys. Status Solidi A (1)

D. J. Morgan and M. J. Adams, “Quantum-noise in semiconductor lasers,” Phys. Status Solidi A 11, 243–253 (1972).
[CrossRef]

Proc. IEEE (2)

T. Ikegami and Y. Suematsu, “Resonance-like characteristics of the direct modulation of a junction laser,” Proc. IEEE 55, 122–123 (1967).
[CrossRef]

T. L. Paoli and J. E. Ripper, “Direct modulation of semiconductor lasers,” Proc. IEEE 58, 1457–1465 (1970).
[CrossRef]

Rev. Sci. Instrum. (1)

R. H. Dicke, “The measurement of thermal radiation at ultra-high frequencies,” Rev. Sci. Instrum. 17, 268–275 (1946).
[CrossRef] [PubMed]

Other (5)

H. Kressel and J. K. Butler, Semiconductor Lasers and Heterojunction LEDs (Academic, Orlando, 1977), Chap. 17, p. 556.

H. Jäckel, “Lichtemissionsrauschen und dynamisches Verhalten von GaAlAs-Heterostruktur-Diodenlasern im Frequenzbereich von 10 MHz bis 8 GHz,” Ph.D. dissertation (ETH Zürich, Switzerland, 1980), Chap. 3, pp. 66–125.

R. Grisar, G. Schmidtke, M. Tacke, and G. Restelli, eds., Monitoring of Gaseous Pollutants by Tunable Diode Lasers, Proceedings of the International Symposium, Freiburg, Germany, October 1988 (Kluwer Academic, Dordrecht, 1989).
[CrossRef]

H. Fischer, H. Wolf, B. Halford, and M. Tacke, “Low-frequency amplitude noise characteristics of lead-salt diode lasers by molecular beam epitaxy,” Infrared Phys. (to be published).

K.-H. Schlereth, “Bleisalzdiodenlaser mit verteilter Rückkopplung,” Diploma Thesis (University of Würzburg, Germany, 1987), Chap. 5.3, pp. 62–64.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for the measurement of the RIN.

Fig. 2
Fig. 2

Photocurrent (solid curve) and RIN at 10 (dot–dashed curve), 50 (long-dashed curve), and 160 MHz (short-dashed curve) for a BH laser at 90 K. The RIN is sketched on a log scale. The threshold current is 75 mA.

Fig. 3
Fig. 3

Smoothed drawing of the noise power displayed on the spectrum analyzer for various pumping levels [I/Ith = 1.7 (solid curve), I/Ith = 2.6 (dashed curve), and I/Ith = 3.06 (dot–dashed curve)] for a BH laser.

Fig. 4
Fig. 4

Photocurrent (dashed curve) and log RIN (solid curve) at 50 MHz for a DH stripe-contact laser (T = 115 K, Ith = 216 mA).

Fig. 5
Fig. 5

Comparison of the total RIN (×) with the RIN of the strongest isolated single mode (+) for a DH laser.

Fig. 6
Fig. 6

Photocurrent (dashed curve) and log RIN (solid curve) at 50 MHz for a Mesa laser (T = 90 K, Ith = 108 mA).

Fig. 7
Fig. 7

Photocurrent (dashed curve) and log RIN (solid curve) at 50 MHz for a DBR laser (T = 100 K, Ith = 156 mA).

Fig. 8
Fig. 8

Comparison between theoretical (—) and experimental (×) data for the RIN of a DH stripe-contact laser at 50 MHz. The RIN values are depicted on a log scale.

Fig. 9
Fig. 9

Comparison between theoretical (—) and experimental (×) data for the RIN of a BH laser at 50 MHz. The RIN values are depicted on a log scale.

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

d N ( t ) d t = P - R sp t - R s t S ( t ) + F N ( t ) ,
d S ( t ) d t = S ( t ) ( R st - 1 τ ph ) + R sp + F s ( t ) ,
F N ( t ) F N ( t ) = V N 2 δ ( t - t ) ,
F s ( t ) F s ( t ) = V s 2 δ ( t - t ) ,
F s ( t ) F N ( t ) = V s V N δ ( t - t ) ,
Δ N ( t ) = N ( t ) - N ¯ ,
Δ S ( t ) = S ( t ) - S ¯
R st = R ¯ st + R ¯ st N ¯ Δ N ( t ) ,
R sp = R ¯ sp + R sp N ¯ Δ N ( t ) ,
R sp t = R ¯ sp t + R ¯ sp t N Δ N ( t ) = R ¯ sp t + 1 τ e Δ N ( t ) ,
RIN = [ Δ S ( ω ) ] 2 S ¯ 2 = 1 S ¯ 2 × A 3 2 [ F N ( ω ) ] 2 + ( ω 2 + A 1 2 ) [ F s ( ω ) ] 2 - 2 A 1 A 3 F N ( ω ) F s ( ω ) ( A 1 A 4 - A 2 A 3 - ω 2 ) 2 + ω 2 ( A 1 + A 4 ) 2 ,
A 1 = - 1 τ e - R ¯ st N ¯ S ¯ ,
A 2 = - R ¯ st ,
A 3 = S ¯ R ¯ st N ¯ + R ¯ sp N ¯ ,
A 4 = R st - 1 τ ph .
[ F s ( ω ) ] 2 = 2 [ S ¯ / τ ph + R ¯ sp + ( R ¯ st E + R ¯ st A ) S ¯ ] ,
[ F N ( ω ) ] 2 = 2 [ P + R ¯ sp t + ( R ¯ st E + R ¯ st A ) S ¯ ] ,
F s ( ω ) F N ( ω ) = - 2 [ R ¯ sp + ( R ¯ st E + R ¯ st A ) S ¯ ] ,
( ω 2 + A 1 ) [ F s ( ω ) ] 2 2 A 1 A 3 F N ( ω ) F s ( ω ) A 3 2 [ F N ( ω ) ] 2 ,
A 2 A 3 A 1 A 4 ,
A 1 A 4 ,
R ¯ st N ¯ S R ¯ sp N ¯ .
RIN = 2 { [ ( 1 / τ R ) 2 + ω 2 ] } [ S ¯ / τ ph + R ¯ sp + ( R ¯ st E + R ¯ st A ) S ¯ ] S ¯ 2 ( ω R 2 - ω 2 ) 2 + ω 2 ( 1 / τ R ) 2 ,
ω R = R ¯ st S ¯ R ¯ st N ¯ 1 τ e τ ph ( I I th - 1 )
1 τ R = 1 τ e + R ¯ st N ¯ S ¯ = 1 τ e + ω R 2 R ¯ st ,
S ¯ = τ ph ( I th / e ) ( I / I th - 1 ) .
R ¯ st E ( N ¯ ) = R ¯ st N ¯ N ¯ ,
R ¯ st A = R ¯ st N ¯ N ¯ 0 ,
P ( ω ) = ( RIN i ph 2 + 2 e i ph ) R L B D ( ω ) + Δ P ampI ,
i ph = ( η e / h ν ) P ,
RIN ( ω 0 ) ( I / I th ) 2 ( I / I th - 1 ) 3 .
1 τ ph = ( c μ e ) [ α s + 1 2 L ln ( 1 R 1 R 2 ) ] ,
R st = ( c / μ e ) Γ g st
Γ g st ( I th ) = α s + 1 2 L ln ( 1 R 1 R 2 ) .
g ( N ) = d g d N | N th N ,
J nom = I / V ,
N = τ e J nom ( V / e ) .

Metrics