Abstract

A method that uses second-harmonic generation is applied to the study of the oxidized Si(111) surface by in situ control of thermal and synthetic oxide etching with monolayer atomic resolution. It is shown that the thin oxide layer that is adjacent to the Si surface (with a 5–10-Å thickness) exerts a strong influence on the reflected second-harmonic intensity. The contribution of the remaining bulk oxide is insignificant. Various contributions to the nonlinear polarization in the SiO2–Si interface, such as the static electric field, the inhomogeneous deformation, and the effect of a crystalline oxide layer, are considered.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. K. Tom, T. F. Heinz, and Y. R. Shen, “Second-harmonic reflection from silicon surfaces and its relation to structural symmetry,” Phys. Rev. Lett. 51, 1983–1986 (1983).
    [Crossref]
  2. T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation,” Phys. Rev. Lett. 54, 63–66 (1984).
    [Crossref]
  3. Y. R. Shen, “Surface studies by optical second harmonic generation,” J. Vac. Sci. Technol. B 3(5), 1464–1466 (1985).
    [Crossref]
  4. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  5. P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254–8263 (1986).
    [Crossref]
  6. P. Guyot-Sionnest and Y. R. Shen, “Bulk contribution in surface second-harmonic generation,” Phys. Rev. B 38, 7985–7989 (1988).
    [Crossref]
  7. T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of symmetry and disordering of Si(111)—7 × 7 surfaces by optical second harmonic generation,” J. Vac. Sci. Technol. B 3(5), 1467–1470 (1985).
    [Crossref]
  8. S. V. Govorcov, V. I. Emel’yanov, N. I. Koroteev, G. I. Petrov, I. L. Shumay, and V. V. Yakovlev, “Inhomogeneous deformation of silicon surface layers probed by second-harmonic generation in reflection,” J. Opt. Soc. Am. B 6, 1117–1123 (1989).
    [Crossref]
  9. N. F. Mott, “Silicon dioxide and the chalcogenide semiconductors; similarities and differences,” Adv. Phys. 26, 363–391 (1977).
    [Crossref]
  10. C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett. 18, 167–170 (1967).
    [Crossref]
  11. O. A. Aktsipetrov and E. D. Mishina, “The optical nonlinear electroreflectance in germanium and silicon,” Sov. Phys. Dokl. 29, 62–65 (1984).
  12. A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, “SiO2 transformation: interfacial structure and mechanism,” Phys. Rev. Lett. 59, 213–217 (1987).
    [Crossref] [PubMed]
  13. A. V. Emel’yanov and V. V. Egorkin, “About the structure of the transition layer in Si/SiO2 interface,” Sov. Phys. Poverkhnost 11, 44–50 (1987).
  14. O. A. Aktsipetrov, I. M. Baranova, and Jy. N. Il’inski, “The surface contribution for second harmonic generation reflected from a centrosymmetric semiconductor,” Sov. Phys. JETP 64, 167–173 (1986).
  15. J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987).
    [Crossref]
  16. C. W. van Hesselt, M. A. Verheijen, and Th. Rasing, “Vicinal Si(111)surfaces studied by optical second-harmonic generation: step induced anisotropy and surface-bulk discrimination,” Phys. Rev. B 42, 9263–9266 (1990).
    [Crossref]
  17. A. M. Tonshin, B. A. Kamaritski, and V. N. Spector, “The technology structure and properties of siliconorganic dielectric—polyorganosilseskviloxan,” Sov. Chem. Usp. 52, 1365–1409 (1983).

1990 (1)

C. W. van Hesselt, M. A. Verheijen, and Th. Rasing, “Vicinal Si(111)surfaces studied by optical second-harmonic generation: step induced anisotropy and surface-bulk discrimination,” Phys. Rev. B 42, 9263–9266 (1990).
[Crossref]

1989 (1)

1988 (1)

P. Guyot-Sionnest and Y. R. Shen, “Bulk contribution in surface second-harmonic generation,” Phys. Rev. B 38, 7985–7989 (1988).
[Crossref]

1987 (3)

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987).
[Crossref]

A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, “SiO2 transformation: interfacial structure and mechanism,” Phys. Rev. Lett. 59, 213–217 (1987).
[Crossref] [PubMed]

A. V. Emel’yanov and V. V. Egorkin, “About the structure of the transition layer in Si/SiO2 interface,” Sov. Phys. Poverkhnost 11, 44–50 (1987).

1986 (2)

O. A. Aktsipetrov, I. M. Baranova, and Jy. N. Il’inski, “The surface contribution for second harmonic generation reflected from a centrosymmetric semiconductor,” Sov. Phys. JETP 64, 167–173 (1986).

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254–8263 (1986).
[Crossref]

1985 (2)

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of symmetry and disordering of Si(111)—7 × 7 surfaces by optical second harmonic generation,” J. Vac. Sci. Technol. B 3(5), 1467–1470 (1985).
[Crossref]

Y. R. Shen, “Surface studies by optical second harmonic generation,” J. Vac. Sci. Technol. B 3(5), 1464–1466 (1985).
[Crossref]

1984 (2)

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation,” Phys. Rev. Lett. 54, 63–66 (1984).
[Crossref]

O. A. Aktsipetrov and E. D. Mishina, “The optical nonlinear electroreflectance in germanium and silicon,” Sov. Phys. Dokl. 29, 62–65 (1984).

1983 (2)

A. M. Tonshin, B. A. Kamaritski, and V. N. Spector, “The technology structure and properties of siliconorganic dielectric—polyorganosilseskviloxan,” Sov. Chem. Usp. 52, 1365–1409 (1983).

H. W. K. Tom, T. F. Heinz, and Y. R. Shen, “Second-harmonic reflection from silicon surfaces and its relation to structural symmetry,” Phys. Rev. Lett. 51, 1983–1986 (1983).
[Crossref]

1977 (1)

N. F. Mott, “Silicon dioxide and the chalcogenide semiconductors; similarities and differences,” Adv. Phys. 26, 363–391 (1977).
[Crossref]

1967 (1)

C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett. 18, 167–170 (1967).
[Crossref]

Aktsipetrov, O. A.

O. A. Aktsipetrov, I. M. Baranova, and Jy. N. Il’inski, “The surface contribution for second harmonic generation reflected from a centrosymmetric semiconductor,” Sov. Phys. JETP 64, 167–173 (1986).

O. A. Aktsipetrov and E. D. Mishina, “The optical nonlinear electroreflectance in germanium and silicon,” Sov. Phys. Dokl. 29, 62–65 (1984).

Baranova, I. M.

O. A. Aktsipetrov, I. M. Baranova, and Jy. N. Il’inski, “The surface contribution for second harmonic generation reflected from a centrosymmetric semiconductor,” Sov. Phys. JETP 64, 167–173 (1986).

Bevk, J.

A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, “SiO2 transformation: interfacial structure and mechanism,” Phys. Rev. Lett. 59, 213–217 (1987).
[Crossref] [PubMed]

Bloembergen, N.

C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett. 18, 167–170 (1967).
[Crossref]

Chang, R. K.

C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett. 18, 167–170 (1967).
[Crossref]

Chen, W.

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254–8263 (1986).
[Crossref]

Egorkin, V. V.

A. V. Emel’yanov and V. V. Egorkin, “About the structure of the transition layer in Si/SiO2 interface,” Sov. Phys. Poverkhnost 11, 44–50 (1987).

Emel’yanov, A. V.

A. V. Emel’yanov and V. V. Egorkin, “About the structure of the transition layer in Si/SiO2 interface,” Sov. Phys. Poverkhnost 11, 44–50 (1987).

Emel’yanov, V. I.

Govorcov, S. V.

Guyot-Sionnest, P.

P. Guyot-Sionnest and Y. R. Shen, “Bulk contribution in surface second-harmonic generation,” Phys. Rev. B 38, 7985–7989 (1988).
[Crossref]

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254–8263 (1986).
[Crossref]

Heinz, T. F.

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of symmetry and disordering of Si(111)—7 × 7 surfaces by optical second harmonic generation,” J. Vac. Sci. Technol. B 3(5), 1467–1470 (1985).
[Crossref]

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation,” Phys. Rev. Lett. 54, 63–66 (1984).
[Crossref]

H. W. K. Tom, T. F. Heinz, and Y. R. Shen, “Second-harmonic reflection from silicon surfaces and its relation to structural symmetry,” Phys. Rev. Lett. 51, 1983–1986 (1983).
[Crossref]

Il’inski, Jy. N.

O. A. Aktsipetrov, I. M. Baranova, and Jy. N. Il’inski, “The surface contribution for second harmonic generation reflected from a centrosymmetric semiconductor,” Sov. Phys. JETP 64, 167–173 (1986).

Kamaritski, B. A.

A. M. Tonshin, B. A. Kamaritski, and V. N. Spector, “The technology structure and properties of siliconorganic dielectric—polyorganosilseskviloxan,” Sov. Chem. Usp. 52, 1365–1409 (1983).

Koroteev, N. I.

Lee, C. H.

C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett. 18, 167–170 (1967).
[Crossref]

Loy, M. M. T.

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of symmetry and disordering of Si(111)—7 × 7 surfaces by optical second harmonic generation,” J. Vac. Sci. Technol. B 3(5), 1467–1470 (1985).
[Crossref]

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation,” Phys. Rev. Lett. 54, 63–66 (1984).
[Crossref]

Mishina, E. D.

O. A. Aktsipetrov and E. D. Mishina, “The optical nonlinear electroreflectance in germanium and silicon,” Sov. Phys. Dokl. 29, 62–65 (1984).

Moss, D. J.

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987).
[Crossref]

Mott, N. F.

N. F. Mott, “Silicon dioxide and the chalcogenide semiconductors; similarities and differences,” Adv. Phys. 26, 363–391 (1977).
[Crossref]

Ourmazd, A.

A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, “SiO2 transformation: interfacial structure and mechanism,” Phys. Rev. Lett. 59, 213–217 (1987).
[Crossref] [PubMed]

Petrov, G. I.

Rasing, Th.

C. W. van Hesselt, M. A. Verheijen, and Th. Rasing, “Vicinal Si(111)surfaces studied by optical second-harmonic generation: step induced anisotropy and surface-bulk discrimination,” Phys. Rev. B 42, 9263–9266 (1990).
[Crossref]

Rentschler, J. A.

A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, “SiO2 transformation: interfacial structure and mechanism,” Phys. Rev. Lett. 59, 213–217 (1987).
[Crossref] [PubMed]

Shen, Y. R.

P. Guyot-Sionnest and Y. R. Shen, “Bulk contribution in surface second-harmonic generation,” Phys. Rev. B 38, 7985–7989 (1988).
[Crossref]

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254–8263 (1986).
[Crossref]

Y. R. Shen, “Surface studies by optical second harmonic generation,” J. Vac. Sci. Technol. B 3(5), 1464–1466 (1985).
[Crossref]

H. W. K. Tom, T. F. Heinz, and Y. R. Shen, “Second-harmonic reflection from silicon surfaces and its relation to structural symmetry,” Phys. Rev. Lett. 51, 1983–1986 (1983).
[Crossref]

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Shumay, I. L.

Sipe, J. E.

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987).
[Crossref]

Spector, V. N.

A. M. Tonshin, B. A. Kamaritski, and V. N. Spector, “The technology structure and properties of siliconorganic dielectric—polyorganosilseskviloxan,” Sov. Chem. Usp. 52, 1365–1409 (1983).

Taylor, D. W.

A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, “SiO2 transformation: interfacial structure and mechanism,” Phys. Rev. Lett. 59, 213–217 (1987).
[Crossref] [PubMed]

Thompson, W. A.

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of symmetry and disordering of Si(111)—7 × 7 surfaces by optical second harmonic generation,” J. Vac. Sci. Technol. B 3(5), 1467–1470 (1985).
[Crossref]

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation,” Phys. Rev. Lett. 54, 63–66 (1984).
[Crossref]

Tom, H. W. K.

H. W. K. Tom, T. F. Heinz, and Y. R. Shen, “Second-harmonic reflection from silicon surfaces and its relation to structural symmetry,” Phys. Rev. Lett. 51, 1983–1986 (1983).
[Crossref]

Tonshin, A. M.

A. M. Tonshin, B. A. Kamaritski, and V. N. Spector, “The technology structure and properties of siliconorganic dielectric—polyorganosilseskviloxan,” Sov. Chem. Usp. 52, 1365–1409 (1983).

van Driel, H. M.

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987).
[Crossref]

van Hesselt, C. W.

C. W. van Hesselt, M. A. Verheijen, and Th. Rasing, “Vicinal Si(111)surfaces studied by optical second-harmonic generation: step induced anisotropy and surface-bulk discrimination,” Phys. Rev. B 42, 9263–9266 (1990).
[Crossref]

Verheijen, M. A.

C. W. van Hesselt, M. A. Verheijen, and Th. Rasing, “Vicinal Si(111)surfaces studied by optical second-harmonic generation: step induced anisotropy and surface-bulk discrimination,” Phys. Rev. B 42, 9263–9266 (1990).
[Crossref]

Yakovlev, V. V.

Adv. Phys. (1)

N. F. Mott, “Silicon dioxide and the chalcogenide semiconductors; similarities and differences,” Adv. Phys. 26, 363–391 (1977).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (2)

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of symmetry and disordering of Si(111)—7 × 7 surfaces by optical second harmonic generation,” J. Vac. Sci. Technol. B 3(5), 1467–1470 (1985).
[Crossref]

Y. R. Shen, “Surface studies by optical second harmonic generation,” J. Vac. Sci. Technol. B 3(5), 1464–1466 (1985).
[Crossref]

Phys. Rev. B (4)

P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254–8263 (1986).
[Crossref]

P. Guyot-Sionnest and Y. R. Shen, “Bulk contribution in surface second-harmonic generation,” Phys. Rev. B 38, 7985–7989 (1988).
[Crossref]

J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987).
[Crossref]

C. W. van Hesselt, M. A. Verheijen, and Th. Rasing, “Vicinal Si(111)surfaces studied by optical second-harmonic generation: step induced anisotropy and surface-bulk discrimination,” Phys. Rev. B 42, 9263–9266 (1990).
[Crossref]

Phys. Rev. Lett. (4)

C. H. Lee, R. K. Chang, and N. Bloembergen, “Nonlinear electroreflectance in silicon and silver,” Phys. Rev. Lett. 18, 167–170 (1967).
[Crossref]

A. Ourmazd, D. W. Taylor, J. A. Rentschler, and J. Bevk, “SiO2 transformation: interfacial structure and mechanism,” Phys. Rev. Lett. 59, 213–217 (1987).
[Crossref] [PubMed]

H. W. K. Tom, T. F. Heinz, and Y. R. Shen, “Second-harmonic reflection from silicon surfaces and its relation to structural symmetry,” Phys. Rev. Lett. 51, 1983–1986 (1983).
[Crossref]

T. F. Heinz, M. M. T. Loy, and W. A. Thompson, “Study of Si(111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation,” Phys. Rev. Lett. 54, 63–66 (1984).
[Crossref]

Sov. Chem. Usp. (1)

A. M. Tonshin, B. A. Kamaritski, and V. N. Spector, “The technology structure and properties of siliconorganic dielectric—polyorganosilseskviloxan,” Sov. Chem. Usp. 52, 1365–1409 (1983).

Sov. Phys. Dokl. (1)

O. A. Aktsipetrov and E. D. Mishina, “The optical nonlinear electroreflectance in germanium and silicon,” Sov. Phys. Dokl. 29, 62–65 (1984).

Sov. Phys. JETP (1)

O. A. Aktsipetrov, I. M. Baranova, and Jy. N. Il’inski, “The surface contribution for second harmonic generation reflected from a centrosymmetric semiconductor,” Sov. Phys. JETP 64, 167–173 (1986).

Sov. Phys. Poverkhnost (1)

A. V. Emel’yanov and V. V. Egorkin, “About the structure of the transition layer in Si/SiO2 interface,” Sov. Phys. Poverkhnost 11, 44–50 (1987).

Other (1)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SH polarization dependence at normal incidence on angle ψ(the pump polarization vector is rotating), a, before and, b, after thermal oxide etching. SH radiation is polarized along the [01 1 ¯] direction. SH rotational dependence at sloped incidence on the angle (the sample is rotating), c, before and, d, after etching. The pump and SH are p polarized. dox(0) = 500 Å in all cases.

Fig. 2
Fig. 2

Variation of SH intensity during etching. a, Etching rate v1 = 90 Å/min and at normal incidence for three oxide thicknesses: 1, dox(0) = 500 Å; 2,1500 Å. 3 2000 Å. Curve 4 was obtained at sloped incidence and dox(0) = 500 Å; curve 5 corresponds to linear reflection Iω(t)/Iω0. b, Etching rate v2 =10 Å/min and a normal incidence, dox(0) = 500 Å.

Fig. 3
Fig. 3

Variation of SH intensity during the 5000-Å-thick synthetic oxide etching at normal incidence (curve 1). The etching rate is 90 Å/min. Curve 2 corresponds to linear reflection Iω(t)/Iω0.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P s d ( 2 ω ) = χ i j k ( 2 ) d , s ( z ) E j ( ω ) E k ( ω ) .
P b q ( 2 ω ) = χ i j k l ( 2 ) q , b E j ( ω ) K k E l ( ω ) .
P s q ( 2 ω ) = χ i j z z ( 2 ) q , s ( z ) E j ( ω ) z E z ( ω ) ,
P st d ( 2 ω ) = χ i j k ( 2 ) d , st ( z ) E j ( ω ) E k ( ω ) .
P E d ( 2 ω ) = χ i j k z ( 3 ) d , b E j ( ω ) E k ( ω ) E 0 .
P ox d ( 2 ω ) = χ i j k ( 2 ) d , ox E j ( ω ) E k ( ω ) .
P nl ( 2 ω ) = P s d ( 2 ω ) + P b q ( 2 ω ) + P s q ( 2 ω ) + P st d ( 2 ω ) + P ox d ( 2 ω ) + P E d ( 2 ω ) ,

Metrics