Abstract

Using a newly developed optoelectronic source of well-collimated beams of subpicosecond pulses of terahertz radiation to excite a N2O vapor cell, we have observed the subsequent emission from the vapor of a coherent pulse train extending as long as 1 ns. The individual subpicosecond terahertz pulses of the train are separated by 39.8 ps, corresponding to the frequency separation between adjacent rotational lines of the excited manifold of more than 50 lines. From these observations the coherent relaxation time T2 is obtained as a function of vapor pressure, even for the case of overlapping lines. In addition, from the pulse repetition rate in the train the frequency separation between the rotational lines is determined. Finally, from the changing individual pulse shapes in the train the anharmonicity factor for the N2O molecule is evaluated.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., A. Abragam, The Principles of Nuclear Magnetism (Oxford U. Press, New York, 1961).
  2. N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567 (1964).
    [Crossref]
  3. See, e.g., L. Allen and J. H. Eberly, Optical Resonance and Two-Level-Atoms (Wiley, New York, 1975).
  4. R. G. Brewer, “Coherent optical spectroscopy,” in Frontiers in Laser Spectroscopy, R. Balian, S. Haroche, and S. Liberman, eds. (North-Holland, Amsterdam, 1977), p. 341.
  5. R. L. Shoemaker, “Coherent transient infrared spectroscopy,” in Laser and Coherence Spectroscopy, J. I. Steinfeld, ed. (Plenum, New York, 1978), p. 197.
    [Crossref]
  6. H. Harde and H. Burggraf, “High precision level splitting measurements with picosecond light pulses from an injection laser,” in Coherence and Quantum Optics V, L. Mandel and E. Wolf, eds. (Plenum, New York, 1984), p. 993.
  7. H. Lehmitz, W. Kattau, and H. Harde, “Modulated pumping in Cs with picosecond pulse trains,” in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, and M. Rosenbluh, eds. (Plenum, New York, 1986), p. 97.
    [Crossref]
  8. T. G. Schmalz and W. H. Flygare, “Coherent transient microwave spectroscopy and Fourier transform methods,” in Laser and Coherence Spectroscopy, J. I. Steinfeld, ed. (Plenum, New York, 1978), p. 125.
    [Crossref]
  9. M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High brightness teraHz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337 (1989).
    [Crossref]
  10. M. van Exter, Ch. Fattinger, and D. Grischkowsky, “TeraHz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128 (1989).
    [Crossref]
  11. M. van Exter, Ch. Fattinger, and D. Grischkowsky, “Time-domain far-infrared spectroscopy of water vapor and direct measurement of collisional relaxation times,” in Laser Spectroscopy IX—Proceedings of the Ninth International Conference on Laser Spectroscopy, M. S. Feld, J. E. Thomas, and A. Mooradian, eds. (Academic, San Diego, 1989).
  12. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
    [Crossref]
  13. M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic teraHz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
    [Crossref]
  14. M. Rosatzin, D. Suter, W. Lange, and J. Mlynek, “Phase and amplitude variations of optically induced spin transients,” J. Opt. Soc. Am. B 7, 1231 (1990).
    [Crossref]
  15. K. L. Foster, S. Stenholm, and R. G. Brewer, “Interference pulses in optical free induction decay,” Phys. Rev. A 10, 2318 (1974).
    [Crossref]
  16. M. Woerner, A. Seilmeier, and W. Kaiser, “Reshaping of infrared picosecond pulses after passage through atmospheric CO2,” Opt. Lett. 14, 636 (1989).
    [Crossref] [PubMed]
  17. A. G. Maki, J. S. Wells, and M. D. Vanek, “Heterodyne frequency measurements on N2O near 930 cm−1,” J. Mol. Spectrosc. 138, 84 (1989).
    [Crossref]
  18. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975).
  19. P. W. Anderson, “Pressure broadening in the microwave and infra-red regions,” Phys. Rev. 76, 647 (1949).
    [Crossref]
  20. D. Robert and J. Bonamy, “Short range force effects in semi-classical line broadening calculations,” J. Phys. 40, 923 (1979).
    [Crossref]
  21. M. Margottin-Maclou, P. Dahoo, A. Henry, and L. Henry, “Self-broadening parameters in the ν3 N2O,” J. Mol. Spectrosc. 111, 275 (1985).
    [Crossref]
  22. J. M. Colmont and N. Semmoud-Monnanteuil, “Pressure broadening of the N2O J = 9 ← 8 rotational transition by N2O, N2 and O2,” J. Mol. Spectrosc. 126, 240 (1987).
    [Crossref]
  23. J. E. Rothenberg, D. Grischkowsky, and A. C. Balant, “Observation of the formation of the 0π pulse,” Phys. Rev. Lett. 53, 552 (1984). This paper includes an extensive reference list pertaining to theory and experiments on the 0π pulse.
    [Crossref]
  24. H. Harde, S. Keiding, and D. Grischkowsky, “The commensurate echoes: periodic rephrasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
    [Crossref] [PubMed]

1991 (1)

H. Harde, S. Keiding, and D. Grischkowsky, “The commensurate echoes: periodic rephrasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

1990 (3)

1989 (4)

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High brightness teraHz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337 (1989).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “TeraHz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128 (1989).
[Crossref]

M. Woerner, A. Seilmeier, and W. Kaiser, “Reshaping of infrared picosecond pulses after passage through atmospheric CO2,” Opt. Lett. 14, 636 (1989).
[Crossref] [PubMed]

A. G. Maki, J. S. Wells, and M. D. Vanek, “Heterodyne frequency measurements on N2O near 930 cm−1,” J. Mol. Spectrosc. 138, 84 (1989).
[Crossref]

1987 (1)

J. M. Colmont and N. Semmoud-Monnanteuil, “Pressure broadening of the N2O J = 9 ← 8 rotational transition by N2O, N2 and O2,” J. Mol. Spectrosc. 126, 240 (1987).
[Crossref]

1985 (1)

M. Margottin-Maclou, P. Dahoo, A. Henry, and L. Henry, “Self-broadening parameters in the ν3 N2O,” J. Mol. Spectrosc. 111, 275 (1985).
[Crossref]

1984 (1)

J. E. Rothenberg, D. Grischkowsky, and A. C. Balant, “Observation of the formation of the 0π pulse,” Phys. Rev. Lett. 53, 552 (1984). This paper includes an extensive reference list pertaining to theory and experiments on the 0π pulse.
[Crossref]

1979 (1)

D. Robert and J. Bonamy, “Short range force effects in semi-classical line broadening calculations,” J. Phys. 40, 923 (1979).
[Crossref]

1974 (1)

K. L. Foster, S. Stenholm, and R. G. Brewer, “Interference pulses in optical free induction decay,” Phys. Rev. A 10, 2318 (1974).
[Crossref]

1964 (1)

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567 (1964).
[Crossref]

1949 (1)

P. W. Anderson, “Pressure broadening in the microwave and infra-red regions,” Phys. Rev. 76, 647 (1949).
[Crossref]

Abella, I. D.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567 (1964).
[Crossref]

Abragam, A.

See, e.g., A. Abragam, The Principles of Nuclear Magnetism (Oxford U. Press, New York, 1961).

Allen, L.

See, e.g., L. Allen and J. H. Eberly, Optical Resonance and Two-Level-Atoms (Wiley, New York, 1975).

Anderson, P. W.

P. W. Anderson, “Pressure broadening in the microwave and infra-red regions,” Phys. Rev. 76, 647 (1949).
[Crossref]

Balant, A. C.

J. E. Rothenberg, D. Grischkowsky, and A. C. Balant, “Observation of the formation of the 0π pulse,” Phys. Rev. Lett. 53, 552 (1984). This paper includes an extensive reference list pertaining to theory and experiments on the 0π pulse.
[Crossref]

Bonamy, J.

D. Robert and J. Bonamy, “Short range force effects in semi-classical line broadening calculations,” J. Phys. 40, 923 (1979).
[Crossref]

Brewer, R. G.

K. L. Foster, S. Stenholm, and R. G. Brewer, “Interference pulses in optical free induction decay,” Phys. Rev. A 10, 2318 (1974).
[Crossref]

R. G. Brewer, “Coherent optical spectroscopy,” in Frontiers in Laser Spectroscopy, R. Balian, S. Haroche, and S. Liberman, eds. (North-Holland, Amsterdam, 1977), p. 341.

Burggraf, H.

H. Harde and H. Burggraf, “High precision level splitting measurements with picosecond light pulses from an injection laser,” in Coherence and Quantum Optics V, L. Mandel and E. Wolf, eds. (Plenum, New York, 1984), p. 993.

Colmont, J. M.

J. M. Colmont and N. Semmoud-Monnanteuil, “Pressure broadening of the N2O J = 9 ← 8 rotational transition by N2O, N2 and O2,” J. Mol. Spectrosc. 126, 240 (1987).
[Crossref]

Dahoo, P.

M. Margottin-Maclou, P. Dahoo, A. Henry, and L. Henry, “Self-broadening parameters in the ν3 N2O,” J. Mol. Spectrosc. 111, 275 (1985).
[Crossref]

Eberly, J. H.

See, e.g., L. Allen and J. H. Eberly, Optical Resonance and Two-Level-Atoms (Wiley, New York, 1975).

Fattinger, Ch.

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “TeraHz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128 (1989).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High brightness teraHz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337 (1989).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “Time-domain far-infrared spectroscopy of water vapor and direct measurement of collisional relaxation times,” in Laser Spectroscopy IX—Proceedings of the Ninth International Conference on Laser Spectroscopy, M. S. Feld, J. E. Thomas, and A. Mooradian, eds. (Academic, San Diego, 1989).

Flygare, W. H.

T. G. Schmalz and W. H. Flygare, “Coherent transient microwave spectroscopy and Fourier transform methods,” in Laser and Coherence Spectroscopy, J. I. Steinfeld, ed. (Plenum, New York, 1978), p. 125.
[Crossref]

Foster, K. L.

K. L. Foster, S. Stenholm, and R. G. Brewer, “Interference pulses in optical free induction decay,” Phys. Rev. A 10, 2318 (1974).
[Crossref]

Grischkowsky, D.

H. Harde, S. Keiding, and D. Grischkowsky, “The commensurate echoes: periodic rephrasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic teraHz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
[Crossref]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “TeraHz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128 (1989).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High brightness teraHz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337 (1989).
[Crossref]

J. E. Rothenberg, D. Grischkowsky, and A. C. Balant, “Observation of the formation of the 0π pulse,” Phys. Rev. Lett. 53, 552 (1984). This paper includes an extensive reference list pertaining to theory and experiments on the 0π pulse.
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “Time-domain far-infrared spectroscopy of water vapor and direct measurement of collisional relaxation times,” in Laser Spectroscopy IX—Proceedings of the Ninth International Conference on Laser Spectroscopy, M. S. Feld, J. E. Thomas, and A. Mooradian, eds. (Academic, San Diego, 1989).

Harde, H.

H. Harde, S. Keiding, and D. Grischkowsky, “The commensurate echoes: periodic rephrasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

H. Lehmitz, W. Kattau, and H. Harde, “Modulated pumping in Cs with picosecond pulse trains,” in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, and M. Rosenbluh, eds. (Plenum, New York, 1986), p. 97.
[Crossref]

H. Harde and H. Burggraf, “High precision level splitting measurements with picosecond light pulses from an injection laser,” in Coherence and Quantum Optics V, L. Mandel and E. Wolf, eds. (Plenum, New York, 1984), p. 993.

Hartmann, S. R.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567 (1964).
[Crossref]

Henry, A.

M. Margottin-Maclou, P. Dahoo, A. Henry, and L. Henry, “Self-broadening parameters in the ν3 N2O,” J. Mol. Spectrosc. 111, 275 (1985).
[Crossref]

Henry, L.

M. Margottin-Maclou, P. Dahoo, A. Henry, and L. Henry, “Self-broadening parameters in the ν3 N2O,” J. Mol. Spectrosc. 111, 275 (1985).
[Crossref]

Kaiser, W.

Kattau, W.

H. Lehmitz, W. Kattau, and H. Harde, “Modulated pumping in Cs with picosecond pulse trains,” in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, and M. Rosenbluh, eds. (Plenum, New York, 1986), p. 97.
[Crossref]

Keiding, S.

H. Harde, S. Keiding, and D. Grischkowsky, “The commensurate echoes: periodic rephrasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[Crossref]

Kurnit, N. A.

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567 (1964).
[Crossref]

Lange, W.

Lehmitz, H.

H. Lehmitz, W. Kattau, and H. Harde, “Modulated pumping in Cs with picosecond pulse trains,” in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, and M. Rosenbluh, eds. (Plenum, New York, 1986), p. 97.
[Crossref]

Maki, A. G.

A. G. Maki, J. S. Wells, and M. D. Vanek, “Heterodyne frequency measurements on N2O near 930 cm−1,” J. Mol. Spectrosc. 138, 84 (1989).
[Crossref]

Margottin-Maclou, M.

M. Margottin-Maclou, P. Dahoo, A. Henry, and L. Henry, “Self-broadening parameters in the ν3 N2O,” J. Mol. Spectrosc. 111, 275 (1985).
[Crossref]

Mlynek, J.

Robert, D.

D. Robert and J. Bonamy, “Short range force effects in semi-classical line broadening calculations,” J. Phys. 40, 923 (1979).
[Crossref]

Rosatzin, M.

Rothenberg, J. E.

J. E. Rothenberg, D. Grischkowsky, and A. C. Balant, “Observation of the formation of the 0π pulse,” Phys. Rev. Lett. 53, 552 (1984). This paper includes an extensive reference list pertaining to theory and experiments on the 0π pulse.
[Crossref]

Schawlow, A. L.

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975).

Schmalz, T. G.

T. G. Schmalz and W. H. Flygare, “Coherent transient microwave spectroscopy and Fourier transform methods,” in Laser and Coherence Spectroscopy, J. I. Steinfeld, ed. (Plenum, New York, 1978), p. 125.
[Crossref]

Seilmeier, A.

Semmoud-Monnanteuil, N.

J. M. Colmont and N. Semmoud-Monnanteuil, “Pressure broadening of the N2O J = 9 ← 8 rotational transition by N2O, N2 and O2,” J. Mol. Spectrosc. 126, 240 (1987).
[Crossref]

Shoemaker, R. L.

R. L. Shoemaker, “Coherent transient infrared spectroscopy,” in Laser and Coherence Spectroscopy, J. I. Steinfeld, ed. (Plenum, New York, 1978), p. 197.
[Crossref]

Stenholm, S.

K. L. Foster, S. Stenholm, and R. G. Brewer, “Interference pulses in optical free induction decay,” Phys. Rev. A 10, 2318 (1974).
[Crossref]

Suter, D.

Townes, C. H.

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975).

van Exter, M.

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic teraHz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
[Crossref]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “TeraHz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128 (1989).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High brightness teraHz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337 (1989).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “Time-domain far-infrared spectroscopy of water vapor and direct measurement of collisional relaxation times,” in Laser Spectroscopy IX—Proceedings of the Ninth International Conference on Laser Spectroscopy, M. S. Feld, J. E. Thomas, and A. Mooradian, eds. (Academic, San Diego, 1989).

Vanek, M. D.

A. G. Maki, J. S. Wells, and M. D. Vanek, “Heterodyne frequency measurements on N2O near 930 cm−1,” J. Mol. Spectrosc. 138, 84 (1989).
[Crossref]

Wells, J. S.

A. G. Maki, J. S. Wells, and M. D. Vanek, “Heterodyne frequency measurements on N2O near 930 cm−1,” J. Mol. Spectrosc. 138, 84 (1989).
[Crossref]

Woerner, M.

Appl. Phys. Lett. (1)

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High brightness teraHz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337 (1989).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic teraHz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
[Crossref]

J. Mol. Spectrosc. (3)

A. G. Maki, J. S. Wells, and M. D. Vanek, “Heterodyne frequency measurements on N2O near 930 cm−1,” J. Mol. Spectrosc. 138, 84 (1989).
[Crossref]

M. Margottin-Maclou, P. Dahoo, A. Henry, and L. Henry, “Self-broadening parameters in the ν3 N2O,” J. Mol. Spectrosc. 111, 275 (1985).
[Crossref]

J. M. Colmont and N. Semmoud-Monnanteuil, “Pressure broadening of the N2O J = 9 ← 8 rotational transition by N2O, N2 and O2,” J. Mol. Spectrosc. 126, 240 (1987).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. (1)

D. Robert and J. Bonamy, “Short range force effects in semi-classical line broadening calculations,” J. Phys. 40, 923 (1979).
[Crossref]

Opt. Lett. (2)

Phys. Rev. (1)

P. W. Anderson, “Pressure broadening in the microwave and infra-red regions,” Phys. Rev. 76, 647 (1949).
[Crossref]

Phys. Rev. A (1)

K. L. Foster, S. Stenholm, and R. G. Brewer, “Interference pulses in optical free induction decay,” Phys. Rev. A 10, 2318 (1974).
[Crossref]

Phys. Rev. Lett. (3)

J. E. Rothenberg, D. Grischkowsky, and A. C. Balant, “Observation of the formation of the 0π pulse,” Phys. Rev. Lett. 53, 552 (1984). This paper includes an extensive reference list pertaining to theory and experiments on the 0π pulse.
[Crossref]

H. Harde, S. Keiding, and D. Grischkowsky, “The commensurate echoes: periodic rephrasing of molecular transitions in free-induction decay,” Phys. Rev. Lett. 66, 1834 (1991).
[Crossref] [PubMed]

N. A. Kurnit, I. D. Abella, and S. R. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett. 13, 567 (1964).
[Crossref]

Other (9)

See, e.g., L. Allen and J. H. Eberly, Optical Resonance and Two-Level-Atoms (Wiley, New York, 1975).

R. G. Brewer, “Coherent optical spectroscopy,” in Frontiers in Laser Spectroscopy, R. Balian, S. Haroche, and S. Liberman, eds. (North-Holland, Amsterdam, 1977), p. 341.

R. L. Shoemaker, “Coherent transient infrared spectroscopy,” in Laser and Coherence Spectroscopy, J. I. Steinfeld, ed. (Plenum, New York, 1978), p. 197.
[Crossref]

H. Harde and H. Burggraf, “High precision level splitting measurements with picosecond light pulses from an injection laser,” in Coherence and Quantum Optics V, L. Mandel and E. Wolf, eds. (Plenum, New York, 1984), p. 993.

H. Lehmitz, W. Kattau, and H. Harde, “Modulated pumping in Cs with picosecond pulse trains,” in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, and M. Rosenbluh, eds. (Plenum, New York, 1986), p. 97.
[Crossref]

T. G. Schmalz and W. H. Flygare, “Coherent transient microwave spectroscopy and Fourier transform methods,” in Laser and Coherence Spectroscopy, J. I. Steinfeld, ed. (Plenum, New York, 1978), p. 125.
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “Time-domain far-infrared spectroscopy of water vapor and direct measurement of collisional relaxation times,” in Laser Spectroscopy IX—Proceedings of the Ninth International Conference on Laser Spectroscopy, M. S. Feld, J. E. Thomas, and A. Mooradian, eds. (Academic, San Diego, 1989).

See, e.g., A. Abragam, The Principles of Nuclear Magnetism (Oxford U. Press, New York, 1961).

C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental setup of the terahertz radiation source and detection system with (a) bow-tie transmitting antenna, (b) ultrafast receiving antenna, and (c) terahertz optics.

Fig. 2
Fig. 2

(a) Measured transmitted terahertz pulse and (b) amplitude spectrum of the measured pulse of (a).

Fig. 3
Fig. 3

(a) Measured transmitted terahertz pulse for 800 hPa of N2O vapor and (b) corresponding calculated transmitted terahertz pulse.

Fig. 4
Fig. 4

(a) Reference pulse measured without N2O in the cell, (b) measurement for 120 hpa of N2O vapor, (c) radiated pulse train as difference of (b) and (a), and (d) calculated radiated pulse train with (a) as the input pulse.

Fig. 5
Fig. 5

Measurement (solid curve) and calculation (dashed curve) of the pulse shape of (a) the 1st, (b) the 7th, and (c) the 14th radiated coherent pulses on a magnified time scale for 120 hPa of N2O vapor.

Fig. 6
Fig. 6

(a) Calculated absorption and (b) dispersion in radians of 38.7 cm of 800 hPa of N2O vapor.

Fig. 7
Fig. 7

(a) Fourier-transformed amplitude spectrum of the measured pulse from Fig. 3 (solid curve) and of the reference pulse (dashed curve), and the corresponding (b) absorption and (c) dispersion in radians.

Fig. 8
Fig. 8

Comparison of the Fourier-transformed measurement (circles) and calculation (solid curve) for the central part of the absorption spectrum of 800 hPa of N2O vapor.

Fig. 9
Fig. 9

Comparison of measured (solid curves) and calculated (dashed curves) (a) exciting pulse and (b) first reradiated coherent pulse after propagation through 38.7 cm of 800 hPa of N2O vapor. The agreement between theory and experiment is so precise that the two overlapping curves appear as a single curve. These are the same results as those of Figs. 3(a) and 3(b) but are shown on expanded time scales.

Fig. 10
Fig. 10

Calculated spectra for (a) the amplitude absorption and (b) the dispersion in radians of a 38.7-cm length of 120 hPa of N2O vapor.

Fig. 11
Fig. 11

Self-pressure broadening of N2O as a function of the vapor pressure for the FWHM linewidth of the transition J = 8 → 9 at 226.1 GHz. The solid line represents an interpolation through the measured points (circles); the dashed line would be obtained if propagation effects were neglected.

Fig. 12
Fig. 12

Calculated FID signal from a 38.7-cm length of 67 hPa of N2O vapor compared with a simple exponential decay having the same decay constant. The deviations result from propagation effects and centrifugal dephasing.

Fig. 13
Fig. 13

Calculated transmitted pulse structure for the input pulses of Fig. 4(a) after propagation through 5.4 m of N2O vapor at a pressure of 1013 hPa.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

2 E ( z , t ) z 2 - n 2 c 2 2 E ( z , t ) t 2 = μ 0 2 P ( z , t ) t 2 ,
P ( ω ) = ɛ 0 χ ( ω ) E ( ω ) ,
E ( ω ) = 1 2 π - E ( 0 , t ) exp ( i ω t ) d t .
E ( z , t ) = - E ( ω ) exp { - i [ ω t - k ( ω ) z ] } d ω
P ( z , t ) = ɛ 0 - χ ( ω ) E ( ω ) exp { - i [ ω t - k ( ω ) z ] } d ω .
k ( ω ) = k 0 [ 1 + χ ( ω ) n 2 ] 1 / 2 k 0 [ 1 + 1 2 n 2 χ ( ω ) + i 2 n 2 χ ( ω ) ] ,
Δ k ( ω ) = ( k 0 / 2 n 2 ) χ ( ω ) ,
α ( ω ) = ( k 0 / n 2 ) χ ( ω )
E ( z , t ) = - E ( ω ) exp [ - i ( ω t - k 0 z ) ] exp [ i Δ k ( ω ) z ] × exp [ - 1 2 α ( ω ) z ] d ω .
α J ( ω ) = p f 0 μ 2 h B V ω 2 6 n c ɛ 0 ( k T ) 3 ( J + 1 ) × exp [ - h B V J ( J + 1 ) k T ] G A ( ω , ω J ) ,
G A ( ω , ω J ) = Δ ω J ( ω - ω J ) 2 + ( Δ ω J / 2 ) 2 + Δ ω J ( ω + ω J ) 2 + ( Δ ω J / 2 ) 2
ω J / 2 π = 2 B V ( J + 1 ) - 4 D V ( J + 1 ) 3 ,
Δ k J = p f 0 μ 2 h B V ω ω J 2 3 n c ɛ 0 ( k T ) 3 ( ω J 2 - ω 2 ) ( J + 1 ) × exp [ - h B V J ( J + 1 ) k T ] G N ( ω , ω J ) ,
G N ( ω , ω J ) = 1 - ω Δ ω J 2 8 ω J 2 [ ω + ω J ( ω - ω J ) 2 + ( Δ ω J / 2 ) 2 + ω - ω J ( ω + ω J ) 2 + ( Δ ω J / 2 ) 2 ] .

Metrics