Abstract

We have performed experiments to characterize permanent laser-induced darkening in CdSxSe1−x semiconductor-doped glasses with picosecond pulses as a function of fluence, repetition rate, and pulse width. We find that the darkening occurs by means of a nonlinear process that exhibits an anomalous dependence on pulse width. Transmission spectra show that the induced darkening is uniform over the spectral range from the absorption edge out to 820 μm. Darkening in a number of different glasses is compared. On the basis of our results we propose a mechanism that involves photoassisted trapping of electrons from the semiconductor microcrystallites into states within the glass host material.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. F. Borrelli, D. W. Hall, H. J. Holland, and D. W. Smith, “Quantum confinement effects of semiconductor microcrystallites in glass,” J. Appl. Phys. 61, 5399–5409 (1987).
    [CrossRef]
  2. R. K. Jain and R. C. Lind, “Degenerate four-wave mixing in semiconductor doped glasses,” J. Opt. Soc. Am. 73, 647–652 (1983).
    [CrossRef]
  3. P. Roussignol, D. Ricard, and C. Flytzanis, “Nonlinear optical properties of commercial semiconductor-doped glasses,” Appl. Phys. A 44, 285–292 (1987).
    [CrossRef]
  4. S. M. Saltiel, B. Van Wonterghem, and P. M. Rentzepis, “Measurement of χ3 and phase shift of nonlinear media by means of a phase-conjugate interferometer,” Opt. Lett. 14, 183–185 (1989).
    [CrossRef] [PubMed]
  5. A. Gabel, K. W. Delong, C. T. Seaton, and G. I. Stegeman, “Efficient degenerate four-wave mixing in an ion-exchanged semiconductor doped glass waveguide,” Appl. Phys. Lett. 51, 1682–1684 (1987).
    [CrossRef]
  6. P. Horan and W. Blau, “Photodarkening effect and the optical nonlinearity in a quantum-confined, semiconductor-doped glass,” J. Opt. Soc. Am. B 7, 304–308 (1990).
    [CrossRef]
  7. L. H. Acioli, A. S. L. Gomes, and J. R. RiosLeite, “Measurement of high-order optical nonlinear susceptibilities in semiconductor-doped glasses,” Appl. Phys. Lett. 53, 1788–1790 (1988).
    [CrossRef]
  8. J. T. Remillard and D. G. Steel, “Narrow nonlinear-optical resonances in CdSx Se1−x-doped glasses,” Opt. Lett. 13, 30–32 (1988).
    [CrossRef] [PubMed]
  9. P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis, “New results on optical phase conjugation in semiconductor-doped glasses,” J. Opt. Soc. Am. B 4, 5–13 (1987).
    [CrossRef]
  10. P. Roussignol, M. Kull, D. Ricard, F. deRosemont, R. Frey, and C. Flytzanis, “Time resolved direct observation of Auger recombination in semiconductor doped glasses,” Appl. Phys. Lett. 51, 1882–1884 (1987).
    [CrossRef]
  11. E. Canto, “Picosecond degenerate four-wave mixing in semiconductors,” Ph.D. dissertation (Department of Physics, University of North Texas, Denton, Texas1989).
  12. K. W. DeLong, A. Gabel, C. T. Seaton, and G. I. Stegeman, “Nonlinear transmission, degenerate four-wave mixing, photodarkening, and the effects of carrier-density-dependent nonlinearities in semiconductor-doped glasses,” J. Opt. Soc. Am. B 6, 1306–1313 (1989).
    [CrossRef]
  13. M. Mitsunaga, H. Shinojima, and K. Kubodera, “Laser annealing effect on carrier recombination time in CdSx Se1−x-doped glasses,” J. Opt. Am. B 15, 1448–1452 (1988).
    [CrossRef]
  14. M. Kull, J. L. Contaz, G. Manneberg, and V. Grivickas, “Absorption saturation and photodarkening in semiconductor doped glasses,” Appl. Phys. Lett. 54, 1830–1832 (1989).
    [CrossRef]
  15. V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor doped glasses,” J. Mod. Opt. 35, 1979–1993 (1988).
    [CrossRef]
  16. C. N. Ironside, T. J. Cullen, B. S. Bhumbra, J. Bell, W. C. Banyai, N. Finlayson, C. T. Seaton, and G. I. Stegeman, “Nonlinear-optical effects in ion-exchanged semiconductor-doped glass waveguides,” J. Opt. Soc. Am. B 5, 492–495 (1988).
    [CrossRef]
  17. N. Mansour, K. Mansour, E. W. VanStryland, and M. J. Soileau, “Diffusion of color centers generated by two photon absorption at 532 nm in cubic zirconia,” J. Appl. Phys. 67, 1475–1477 (1989).
    [CrossRef]
  18. O. Madelung, M. Schulz, and H. Weiss, eds., Landolt–Bornstein: Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1982), Vol. 17a, p. 220.

1990 (1)

1989 (4)

S. M. Saltiel, B. Van Wonterghem, and P. M. Rentzepis, “Measurement of χ3 and phase shift of nonlinear media by means of a phase-conjugate interferometer,” Opt. Lett. 14, 183–185 (1989).
[CrossRef] [PubMed]

K. W. DeLong, A. Gabel, C. T. Seaton, and G. I. Stegeman, “Nonlinear transmission, degenerate four-wave mixing, photodarkening, and the effects of carrier-density-dependent nonlinearities in semiconductor-doped glasses,” J. Opt. Soc. Am. B 6, 1306–1313 (1989).
[CrossRef]

M. Kull, J. L. Contaz, G. Manneberg, and V. Grivickas, “Absorption saturation and photodarkening in semiconductor doped glasses,” Appl. Phys. Lett. 54, 1830–1832 (1989).
[CrossRef]

N. Mansour, K. Mansour, E. W. VanStryland, and M. J. Soileau, “Diffusion of color centers generated by two photon absorption at 532 nm in cubic zirconia,” J. Appl. Phys. 67, 1475–1477 (1989).
[CrossRef]

1988 (5)

V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor doped glasses,” J. Mod. Opt. 35, 1979–1993 (1988).
[CrossRef]

C. N. Ironside, T. J. Cullen, B. S. Bhumbra, J. Bell, W. C. Banyai, N. Finlayson, C. T. Seaton, and G. I. Stegeman, “Nonlinear-optical effects in ion-exchanged semiconductor-doped glass waveguides,” J. Opt. Soc. Am. B 5, 492–495 (1988).
[CrossRef]

M. Mitsunaga, H. Shinojima, and K. Kubodera, “Laser annealing effect on carrier recombination time in CdSx Se1−x-doped glasses,” J. Opt. Am. B 15, 1448–1452 (1988).
[CrossRef]

L. H. Acioli, A. S. L. Gomes, and J. R. RiosLeite, “Measurement of high-order optical nonlinear susceptibilities in semiconductor-doped glasses,” Appl. Phys. Lett. 53, 1788–1790 (1988).
[CrossRef]

J. T. Remillard and D. G. Steel, “Narrow nonlinear-optical resonances in CdSx Se1−x-doped glasses,” Opt. Lett. 13, 30–32 (1988).
[CrossRef] [PubMed]

1987 (5)

P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis, “New results on optical phase conjugation in semiconductor-doped glasses,” J. Opt. Soc. Am. B 4, 5–13 (1987).
[CrossRef]

P. Roussignol, M. Kull, D. Ricard, F. deRosemont, R. Frey, and C. Flytzanis, “Time resolved direct observation of Auger recombination in semiconductor doped glasses,” Appl. Phys. Lett. 51, 1882–1884 (1987).
[CrossRef]

A. Gabel, K. W. Delong, C. T. Seaton, and G. I. Stegeman, “Efficient degenerate four-wave mixing in an ion-exchanged semiconductor doped glass waveguide,” Appl. Phys. Lett. 51, 1682–1684 (1987).
[CrossRef]

N. F. Borrelli, D. W. Hall, H. J. Holland, and D. W. Smith, “Quantum confinement effects of semiconductor microcrystallites in glass,” J. Appl. Phys. 61, 5399–5409 (1987).
[CrossRef]

P. Roussignol, D. Ricard, and C. Flytzanis, “Nonlinear optical properties of commercial semiconductor-doped glasses,” Appl. Phys. A 44, 285–292 (1987).
[CrossRef]

1983 (1)

Acioli, L. H.

L. H. Acioli, A. S. L. Gomes, and J. R. RiosLeite, “Measurement of high-order optical nonlinear susceptibilities in semiconductor-doped glasses,” Appl. Phys. Lett. 53, 1788–1790 (1988).
[CrossRef]

Banyai, W. C.

Bell, J.

Bhumbra, B. S.

Blau, W.

Borrelli, N. F.

N. F. Borrelli, D. W. Hall, H. J. Holland, and D. W. Smith, “Quantum confinement effects of semiconductor microcrystallites in glass,” J. Appl. Phys. 61, 5399–5409 (1987).
[CrossRef]

Canto, E.

E. Canto, “Picosecond degenerate four-wave mixing in semiconductors,” Ph.D. dissertation (Department of Physics, University of North Texas, Denton, Texas1989).

Contaz, J. L.

M. Kull, J. L. Contaz, G. Manneberg, and V. Grivickas, “Absorption saturation and photodarkening in semiconductor doped glasses,” Appl. Phys. Lett. 54, 1830–1832 (1989).
[CrossRef]

Cullen, T. J.

DeLong, K. W.

K. W. DeLong, A. Gabel, C. T. Seaton, and G. I. Stegeman, “Nonlinear transmission, degenerate four-wave mixing, photodarkening, and the effects of carrier-density-dependent nonlinearities in semiconductor-doped glasses,” J. Opt. Soc. Am. B 6, 1306–1313 (1989).
[CrossRef]

A. Gabel, K. W. Delong, C. T. Seaton, and G. I. Stegeman, “Efficient degenerate four-wave mixing in an ion-exchanged semiconductor doped glass waveguide,” Appl. Phys. Lett. 51, 1682–1684 (1987).
[CrossRef]

deRosemont, F.

P. Roussignol, M. Kull, D. Ricard, F. deRosemont, R. Frey, and C. Flytzanis, “Time resolved direct observation of Auger recombination in semiconductor doped glasses,” Appl. Phys. Lett. 51, 1882–1884 (1987).
[CrossRef]

Finlayson, N.

Fluegel, B. D.

V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor doped glasses,” J. Mod. Opt. 35, 1979–1993 (1988).
[CrossRef]

Flytzanis, C.

P. Roussignol, M. Kull, D. Ricard, F. deRosemont, R. Frey, and C. Flytzanis, “Time resolved direct observation of Auger recombination in semiconductor doped glasses,” Appl. Phys. Lett. 51, 1882–1884 (1987).
[CrossRef]

P. Roussignol, D. Ricard, and C. Flytzanis, “Nonlinear optical properties of commercial semiconductor-doped glasses,” Appl. Phys. A 44, 285–292 (1987).
[CrossRef]

P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis, “New results on optical phase conjugation in semiconductor-doped glasses,” J. Opt. Soc. Am. B 4, 5–13 (1987).
[CrossRef]

Frey, R.

P. Roussignol, M. Kull, D. Ricard, F. deRosemont, R. Frey, and C. Flytzanis, “Time resolved direct observation of Auger recombination in semiconductor doped glasses,” Appl. Phys. Lett. 51, 1882–1884 (1987).
[CrossRef]

Gabel, A.

K. W. DeLong, A. Gabel, C. T. Seaton, and G. I. Stegeman, “Nonlinear transmission, degenerate four-wave mixing, photodarkening, and the effects of carrier-density-dependent nonlinearities in semiconductor-doped glasses,” J. Opt. Soc. Am. B 6, 1306–1313 (1989).
[CrossRef]

A. Gabel, K. W. Delong, C. T. Seaton, and G. I. Stegeman, “Efficient degenerate four-wave mixing in an ion-exchanged semiconductor doped glass waveguide,” Appl. Phys. Lett. 51, 1682–1684 (1987).
[CrossRef]

Gomes, A. S. L.

L. H. Acioli, A. S. L. Gomes, and J. R. RiosLeite, “Measurement of high-order optical nonlinear susceptibilities in semiconductor-doped glasses,” Appl. Phys. Lett. 53, 1788–1790 (1988).
[CrossRef]

Grivickas, V.

M. Kull, J. L. Contaz, G. Manneberg, and V. Grivickas, “Absorption saturation and photodarkening in semiconductor doped glasses,” Appl. Phys. Lett. 54, 1830–1832 (1989).
[CrossRef]

Hall, D. W.

N. F. Borrelli, D. W. Hall, H. J. Holland, and D. W. Smith, “Quantum confinement effects of semiconductor microcrystallites in glass,” J. Appl. Phys. 61, 5399–5409 (1987).
[CrossRef]

Holland, H. J.

N. F. Borrelli, D. W. Hall, H. J. Holland, and D. W. Smith, “Quantum confinement effects of semiconductor microcrystallites in glass,” J. Appl. Phys. 61, 5399–5409 (1987).
[CrossRef]

Horan, P.

Ironside, C. N.

Jain, R. K.

Koch, S. W.

V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor doped glasses,” J. Mod. Opt. 35, 1979–1993 (1988).
[CrossRef]

Kubodera, K.

M. Mitsunaga, H. Shinojima, and K. Kubodera, “Laser annealing effect on carrier recombination time in CdSx Se1−x-doped glasses,” J. Opt. Am. B 15, 1448–1452 (1988).
[CrossRef]

Kull, M.

M. Kull, J. L. Contaz, G. Manneberg, and V. Grivickas, “Absorption saturation and photodarkening in semiconductor doped glasses,” Appl. Phys. Lett. 54, 1830–1832 (1989).
[CrossRef]

P. Roussignol, M. Kull, D. Ricard, F. deRosemont, R. Frey, and C. Flytzanis, “Time resolved direct observation of Auger recombination in semiconductor doped glasses,” Appl. Phys. Lett. 51, 1882–1884 (1987).
[CrossRef]

Lind, R. C.

Lukasik, J.

Manneberg, G.

M. Kull, J. L. Contaz, G. Manneberg, and V. Grivickas, “Absorption saturation and photodarkening in semiconductor doped glasses,” Appl. Phys. Lett. 54, 1830–1832 (1989).
[CrossRef]

Mansour, K.

N. Mansour, K. Mansour, E. W. VanStryland, and M. J. Soileau, “Diffusion of color centers generated by two photon absorption at 532 nm in cubic zirconia,” J. Appl. Phys. 67, 1475–1477 (1989).
[CrossRef]

Mansour, N.

N. Mansour, K. Mansour, E. W. VanStryland, and M. J. Soileau, “Diffusion of color centers generated by two photon absorption at 532 nm in cubic zirconia,” J. Appl. Phys. 67, 1475–1477 (1989).
[CrossRef]

Mitsunaga, M.

M. Mitsunaga, H. Shinojima, and K. Kubodera, “Laser annealing effect on carrier recombination time in CdSx Se1−x-doped glasses,” J. Opt. Am. B 15, 1448–1452 (1988).
[CrossRef]

Olbright, G. R.

V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor doped glasses,” J. Mod. Opt. 35, 1979–1993 (1988).
[CrossRef]

Peyghambarian, N.

V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor doped glasses,” J. Mod. Opt. 35, 1979–1993 (1988).
[CrossRef]

Remillard, J. T.

Rentzepis, P. M.

Ricard, D.

P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis, “New results on optical phase conjugation in semiconductor-doped glasses,” J. Opt. Soc. Am. B 4, 5–13 (1987).
[CrossRef]

P. Roussignol, M. Kull, D. Ricard, F. deRosemont, R. Frey, and C. Flytzanis, “Time resolved direct observation of Auger recombination in semiconductor doped glasses,” Appl. Phys. Lett. 51, 1882–1884 (1987).
[CrossRef]

P. Roussignol, D. Ricard, and C. Flytzanis, “Nonlinear optical properties of commercial semiconductor-doped glasses,” Appl. Phys. A 44, 285–292 (1987).
[CrossRef]

RiosLeite, J. R.

L. H. Acioli, A. S. L. Gomes, and J. R. RiosLeite, “Measurement of high-order optical nonlinear susceptibilities in semiconductor-doped glasses,” Appl. Phys. Lett. 53, 1788–1790 (1988).
[CrossRef]

Roussignol, P.

P. Roussignol, D. Ricard, and C. Flytzanis, “Nonlinear optical properties of commercial semiconductor-doped glasses,” Appl. Phys. A 44, 285–292 (1987).
[CrossRef]

P. Roussignol, M. Kull, D. Ricard, F. deRosemont, R. Frey, and C. Flytzanis, “Time resolved direct observation of Auger recombination in semiconductor doped glasses,” Appl. Phys. Lett. 51, 1882–1884 (1987).
[CrossRef]

P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis, “New results on optical phase conjugation in semiconductor-doped glasses,” J. Opt. Soc. Am. B 4, 5–13 (1987).
[CrossRef]

Saltiel, S. M.

Seaton, C. T.

Shinojima, H.

M. Mitsunaga, H. Shinojima, and K. Kubodera, “Laser annealing effect on carrier recombination time in CdSx Se1−x-doped glasses,” J. Opt. Am. B 15, 1448–1452 (1988).
[CrossRef]

Smith, D. W.

N. F. Borrelli, D. W. Hall, H. J. Holland, and D. W. Smith, “Quantum confinement effects of semiconductor microcrystallites in glass,” J. Appl. Phys. 61, 5399–5409 (1987).
[CrossRef]

Soileau, M. J.

N. Mansour, K. Mansour, E. W. VanStryland, and M. J. Soileau, “Diffusion of color centers generated by two photon absorption at 532 nm in cubic zirconia,” J. Appl. Phys. 67, 1475–1477 (1989).
[CrossRef]

Steel, D. G.

Stegeman, G. I.

Van Wonterghem, B.

VanStryland, E. W.

N. Mansour, K. Mansour, E. W. VanStryland, and M. J. Soileau, “Diffusion of color centers generated by two photon absorption at 532 nm in cubic zirconia,” J. Appl. Phys. 67, 1475–1477 (1989).
[CrossRef]

Williams, V. S.

V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor doped glasses,” J. Mod. Opt. 35, 1979–1993 (1988).
[CrossRef]

Appl. Phys. A (1)

P. Roussignol, D. Ricard, and C. Flytzanis, “Nonlinear optical properties of commercial semiconductor-doped glasses,” Appl. Phys. A 44, 285–292 (1987).
[CrossRef]

Appl. Phys. Lett. (4)

A. Gabel, K. W. Delong, C. T. Seaton, and G. I. Stegeman, “Efficient degenerate four-wave mixing in an ion-exchanged semiconductor doped glass waveguide,” Appl. Phys. Lett. 51, 1682–1684 (1987).
[CrossRef]

L. H. Acioli, A. S. L. Gomes, and J. R. RiosLeite, “Measurement of high-order optical nonlinear susceptibilities in semiconductor-doped glasses,” Appl. Phys. Lett. 53, 1788–1790 (1988).
[CrossRef]

P. Roussignol, M. Kull, D. Ricard, F. deRosemont, R. Frey, and C. Flytzanis, “Time resolved direct observation of Auger recombination in semiconductor doped glasses,” Appl. Phys. Lett. 51, 1882–1884 (1987).
[CrossRef]

M. Kull, J. L. Contaz, G. Manneberg, and V. Grivickas, “Absorption saturation and photodarkening in semiconductor doped glasses,” Appl. Phys. Lett. 54, 1830–1832 (1989).
[CrossRef]

J. Appl. Phys. (2)

N. Mansour, K. Mansour, E. W. VanStryland, and M. J. Soileau, “Diffusion of color centers generated by two photon absorption at 532 nm in cubic zirconia,” J. Appl. Phys. 67, 1475–1477 (1989).
[CrossRef]

N. F. Borrelli, D. W. Hall, H. J. Holland, and D. W. Smith, “Quantum confinement effects of semiconductor microcrystallites in glass,” J. Appl. Phys. 61, 5399–5409 (1987).
[CrossRef]

J. Mod. Opt. (1)

V. S. Williams, G. R. Olbright, B. D. Fluegel, S. W. Koch, and N. Peyghambarian, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor doped glasses,” J. Mod. Opt. 35, 1979–1993 (1988).
[CrossRef]

J. Opt. Am. B (1)

M. Mitsunaga, H. Shinojima, and K. Kubodera, “Laser annealing effect on carrier recombination time in CdSx Se1−x-doped glasses,” J. Opt. Am. B 15, 1448–1452 (1988).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (4)

Opt. Lett. (2)

Other (2)

E. Canto, “Picosecond degenerate four-wave mixing in semiconductors,” Ph.D. dissertation (Department of Physics, University of North Texas, Denton, Texas1989).

O. Madelung, M. Schulz, and H. Weiss, eds., Landolt–Bornstein: Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, Berlin, 1982), Vol. 17a, p. 220.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectra of Schott OG 515 glass. The dashed curve represents the spectrum of the undarkened sample, and the solid curve represents the spectrum of the darkened sample.

Fig. 2
Fig. 2

Experimental apparatus. D1, probe input detector; D2, probe transmission detector; D3, pump energy detector; BS1 and BS2, beam splitters; SHG, second-harmonic generator.

Fig. 3
Fig. 3

Transmission change for various pump-beam fluences, all for 3000 shots. Solid curve, 49.2 mJ/cm2; dashed curve, 34.3 mJ/cm2; solid curve with squares, 21.2 mJ/cm2; dashed curve with triangles, 19.2 mJ/cm2.

Fig. 4
Fig. 4

Plot of transmission change versus fluence at 1000 shots, from Fig. 3, on a logarithmic scale.

Fig. 5
Fig. 5

Recovery from darkening. Sample was exposed to the pump beam at 67.8 mJ/cm2 for 1200 shots, and then the beam was blocked.

Fig. 6
Fig. 6

Transmission change for various pulse widths of the pump beam for 6000 shots at constant fluence of 24.6 mJ/cm2. Dashed curve, 140 ps; solid curve, 64 ps; solid curve with squares, 20 ps.

Fig. 7
Fig. 7

Comparison of darkening in two samples at 140 ps and 40 mJ/cm2. Solid curve, Corning 3-69; dashed curve, Schott OG 515.

Fig. 8
Fig. 8

Band picture of suggested model. X1 and X2 represent the sequential laser excitations, and ST and GS represent the surface and glass trapping centers, respectively. The dashed lines represent decay paths, where t1, t2, and t3 are the direct recombination, trapping, and trap-decay times, respectively.

Metrics