Abstract

The development of a broadband cw laser with no Fabry–Perot-mode structure is detailed. Through insertion of frequency-selective elements a bandwidth of 12 GHz is achieved, resulting in a peak spectral power density of ~50 μW/MHz. With heterodyne techniques the broadband nature of the field is shown to result solely from fluctuations in the phase. A comparison between the output of the broadband laser and that of a conventional multimode laser demonstrates the different nature of the emission. Discrete lines in the rf intensity spectrum are examined with regard to their origin. The temporal evolution of the spectral profile, starting from quantum noise, is investigated. Several features of this system, which incorporates an intracavity acousto-optic modulator, are remarkably different from those of a conventional cw laser.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  2. W. Demtroeder, Laser Spectroscopy (Springer-Verlag, New York, 1982).
  3. M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1982).
  4. J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992 (1985); W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996 (1985).
    [Crossref] [PubMed]
  5. D. S. Elliott and J. S. Smith, “Experimental synthesis of phase-diffusing optical fields,” J. Opt. Soc. Am. B 5, 1927 (1988).
    [Crossref]
  6. D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, “Two-photon absorption from a phase-diffusing laser field,” Phys. Rev. Lett. 53, 439 (1984).
    [Crossref]
  7. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1983).
  8. P. Ewart, “A modeless, variable bandwidth, tunable laser,” Opt. Commun. 55, 124 (1985).
    [Crossref]
  9. D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, and G. Alber, “Degenerate four-wave mixing with broad-bandwidth pulsed lasers,” Phys. Rev. A 42, 3018 (1990).
    [Crossref] [PubMed]
  10. C. Radzewicz, Z. W. Li, and M. G. Raymer, “Amplitude-stabilized chaotic light,” Phys. Rev. A 37, 2039 (1988).
    [Crossref] [PubMed]
  11. F. V. Kowalski, P. D. Hale, and S. J. Shattil, “Broadband continuous-wave laser,” Opt. Lett. 13, 622 (1988). See also the following, which details pulsed operation of the system and presents a model of a passive cavity containing a frequency shifting element: P. D. Hale and F. V. Kowalski, “Output characteristics of a frequency shifted feedback laser: theory and experiment,” IEEE J. Quantum Electron. 26, 1845 (1990).
    [Crossref] [PubMed]
  12. D. J. Taylor, S. E. Harris, and S. T. K. Nieh, “Electronic tuning of a dye laser using the acousto-optic filter,” Appl. Phys. Lett. 19, 269 (1971).
    [Crossref]
  13. W. Streifer and J. R. Whinnery, “Analysis of a dye laser tuned by acousto-optic filter,” Appl. Phys. Lett. 17, 335 (1970).
    [Crossref]
  14. See, for example, the following and references therein: A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489 (1972); R. S. Seymour, “Acousto-optic Bragg diffraction in anisotropic optically active media,” Appl. Opt. 29, 822 (1990).
    [Crossref] [PubMed]
  15. T. Yano and A. Watanbe, “Acousto-optic figure of merit of TeO2for circularly polarized light,” J. Appl. Phys. 45, 1243 (1974).
    [Crossref]
  16. J. Neev and F. V. Kowalski, “Unidirectional device for a ring laser using an acousto-optic modulator,” Opt. Lett. 13, 375 (1988).
    [Crossref] [PubMed]
  17. J. Eschner, Institut für Experimental Physik, Universität Hamburg, 2000 Hamburg 30, Germany (personal communication).
  18. R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, New York, 1978).
    [Crossref]
  19. F. de Coulon, Signal Theory and Processing (Artech House, Dedham, UK, 1986).
  20. M. Lewenstein and K. Razazewski, “Noise reduction in a Raman ring-laser driven by a chaotic pump,” Opt. Commun. 63, 174 (1987).
    [Crossref]

1990 (1)

D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, and G. Alber, “Degenerate four-wave mixing with broad-bandwidth pulsed lasers,” Phys. Rev. A 42, 3018 (1990).
[Crossref] [PubMed]

1988 (4)

1987 (1)

M. Lewenstein and K. Razazewski, “Noise reduction in a Raman ring-laser driven by a chaotic pump,” Opt. Commun. 63, 174 (1987).
[Crossref]

1985 (2)

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992 (1985); W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996 (1985).
[Crossref] [PubMed]

P. Ewart, “A modeless, variable bandwidth, tunable laser,” Opt. Commun. 55, 124 (1985).
[Crossref]

1984 (1)

D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, “Two-photon absorption from a phase-diffusing laser field,” Phys. Rev. Lett. 53, 439 (1984).
[Crossref]

1974 (1)

T. Yano and A. Watanbe, “Acousto-optic figure of merit of TeO2for circularly polarized light,” J. Appl. Phys. 45, 1243 (1974).
[Crossref]

1972 (1)

See, for example, the following and references therein: A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489 (1972); R. S. Seymour, “Acousto-optic Bragg diffraction in anisotropic optically active media,” Appl. Opt. 29, 822 (1990).
[Crossref] [PubMed]

1971 (1)

D. J. Taylor, S. E. Harris, and S. T. K. Nieh, “Electronic tuning of a dye laser using the acousto-optic filter,” Appl. Phys. Lett. 19, 269 (1971).
[Crossref]

1970 (1)

W. Streifer and J. R. Whinnery, “Analysis of a dye laser tuned by acousto-optic filter,” Appl. Phys. Lett. 17, 335 (1970).
[Crossref]

Alber, G.

D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, and G. Alber, “Degenerate four-wave mixing with broad-bandwidth pulsed lasers,” Phys. Rev. A 42, 3018 (1990).
[Crossref] [PubMed]

Arnett, K.

D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, “Two-photon absorption from a phase-diffusing laser field,” Phys. Rev. Lett. 53, 439 (1984).
[Crossref]

Bonner, W. A.

See, for example, the following and references therein: A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489 (1972); R. S. Seymour, “Acousto-optic Bragg diffraction in anisotropic optically active media,” Appl. Opt. 29, 822 (1990).
[Crossref] [PubMed]

Charlton, A.

D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, and G. Alber, “Degenerate four-wave mixing with broad-bandwidth pulsed lasers,” Phys. Rev. A 42, 3018 (1990).
[Crossref] [PubMed]

Cooper, J.

D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, and G. Alber, “Degenerate four-wave mixing with broad-bandwidth pulsed lasers,” Phys. Rev. A 42, 3018 (1990).
[Crossref] [PubMed]

Dalibard, J.

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992 (1985); W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996 (1985).
[Crossref] [PubMed]

de Coulon, F.

F. de Coulon, Signal Theory and Processing (Artech House, Dedham, UK, 1986).

Demtroeder, W.

W. Demtroeder, Laser Spectroscopy (Springer-Verlag, New York, 1982).

Elliott, D. S.

D. S. Elliott and J. S. Smith, “Experimental synthesis of phase-diffusing optical fields,” J. Opt. Soc. Am. B 5, 1927 (1988).
[Crossref]

D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, “Two-photon absorption from a phase-diffusing laser field,” Phys. Rev. Lett. 53, 439 (1984).
[Crossref]

Eschner, J.

J. Eschner, Institut für Experimental Physik, Universität Hamburg, 2000 Hamburg 30, Germany (personal communication).

Ewart, P.

D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, and G. Alber, “Degenerate four-wave mixing with broad-bandwidth pulsed lasers,” Phys. Rev. A 42, 3018 (1990).
[Crossref] [PubMed]

P. Ewart, “A modeless, variable bandwidth, tunable laser,” Opt. Commun. 55, 124 (1985).
[Crossref]

Hale, P. D.

Hamilton, M. W.

D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, “Two-photon absorption from a phase-diffusing laser field,” Phys. Rev. Lett. 53, 439 (1984).
[Crossref]

Harris, S. E.

D. J. Taylor, S. E. Harris, and S. T. K. Nieh, “Electronic tuning of a dye laser using the acousto-optic filter,” Appl. Phys. Lett. 19, 269 (1971).
[Crossref]

Kingston, R. H.

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, New York, 1978).
[Crossref]

Kowalski, F. V.

Levenson, M. D.

M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1982).

Lewenstein, M.

M. Lewenstein and K. Razazewski, “Noise reduction in a Raman ring-laser driven by a chaotic pump,” Opt. Commun. 63, 174 (1987).
[Crossref]

Li, Z. W.

C. Radzewicz, Z. W. Li, and M. G. Raymer, “Amplitude-stabilized chaotic light,” Phys. Rev. A 37, 2039 (1988).
[Crossref] [PubMed]

Loudon, R.

R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1983).

Meacher, D. R.

D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, and G. Alber, “Degenerate four-wave mixing with broad-bandwidth pulsed lasers,” Phys. Rev. A 42, 3018 (1990).
[Crossref] [PubMed]

Metcalf, H.

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992 (1985); W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996 (1985).
[Crossref] [PubMed]

Migdall, A.

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992 (1985); W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996 (1985).
[Crossref] [PubMed]

Neev, J.

Nieh, S. T. K.

D. J. Taylor, S. E. Harris, and S. T. K. Nieh, “Electronic tuning of a dye laser using the acousto-optic filter,” Appl. Phys. Lett. 19, 269 (1971).
[Crossref]

Phillips, W. D.

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992 (1985); W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996 (1985).
[Crossref] [PubMed]

Prodan, J.

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992 (1985); W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996 (1985).
[Crossref] [PubMed]

Radzewicz, C.

C. Radzewicz, Z. W. Li, and M. G. Raymer, “Amplitude-stabilized chaotic light,” Phys. Rev. A 37, 2039 (1988).
[Crossref] [PubMed]

Raymer, M. G.

C. Radzewicz, Z. W. Li, and M. G. Raymer, “Amplitude-stabilized chaotic light,” Phys. Rev. A 37, 2039 (1988).
[Crossref] [PubMed]

Razazewski, K.

M. Lewenstein and K. Razazewski, “Noise reduction in a Raman ring-laser driven by a chaotic pump,” Opt. Commun. 63, 174 (1987).
[Crossref]

Shattil, S. J.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Smith, J. S.

Smith, S. J.

D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, “Two-photon absorption from a phase-diffusing laser field,” Phys. Rev. Lett. 53, 439 (1984).
[Crossref]

So, I.

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992 (1985); W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996 (1985).
[Crossref] [PubMed]

Streifer, W.

W. Streifer and J. R. Whinnery, “Analysis of a dye laser tuned by acousto-optic filter,” Appl. Phys. Lett. 17, 335 (1970).
[Crossref]

Taylor, D. J.

D. J. Taylor, S. E. Harris, and S. T. K. Nieh, “Electronic tuning of a dye laser using the acousto-optic filter,” Appl. Phys. Lett. 19, 269 (1971).
[Crossref]

Warner, A. W.

See, for example, the following and references therein: A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489 (1972); R. S. Seymour, “Acousto-optic Bragg diffraction in anisotropic optically active media,” Appl. Opt. 29, 822 (1990).
[Crossref] [PubMed]

Watanbe, A.

T. Yano and A. Watanbe, “Acousto-optic figure of merit of TeO2for circularly polarized light,” J. Appl. Phys. 45, 1243 (1974).
[Crossref]

Whinnery, J. R.

W. Streifer and J. R. Whinnery, “Analysis of a dye laser tuned by acousto-optic filter,” Appl. Phys. Lett. 17, 335 (1970).
[Crossref]

White, D. L.

See, for example, the following and references therein: A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489 (1972); R. S. Seymour, “Acousto-optic Bragg diffraction in anisotropic optically active media,” Appl. Opt. 29, 822 (1990).
[Crossref] [PubMed]

Yano, T.

T. Yano and A. Watanbe, “Acousto-optic figure of merit of TeO2for circularly polarized light,” J. Appl. Phys. 45, 1243 (1974).
[Crossref]

Appl. Phys. Lett. (2)

D. J. Taylor, S. E. Harris, and S. T. K. Nieh, “Electronic tuning of a dye laser using the acousto-optic filter,” Appl. Phys. Lett. 19, 269 (1971).
[Crossref]

W. Streifer and J. R. Whinnery, “Analysis of a dye laser tuned by acousto-optic filter,” Appl. Phys. Lett. 17, 335 (1970).
[Crossref]

J. Appl. Phys. (2)

See, for example, the following and references therein: A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489 (1972); R. S. Seymour, “Acousto-optic Bragg diffraction in anisotropic optically active media,” Appl. Opt. 29, 822 (1990).
[Crossref] [PubMed]

T. Yano and A. Watanbe, “Acousto-optic figure of merit of TeO2for circularly polarized light,” J. Appl. Phys. 45, 1243 (1974).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

P. Ewart, “A modeless, variable bandwidth, tunable laser,” Opt. Commun. 55, 124 (1985).
[Crossref]

M. Lewenstein and K. Razazewski, “Noise reduction in a Raman ring-laser driven by a chaotic pump,” Opt. Commun. 63, 174 (1987).
[Crossref]

Opt. Lett. (2)

Phys. Rev. A (2)

D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, and G. Alber, “Degenerate four-wave mixing with broad-bandwidth pulsed lasers,” Phys. Rev. A 42, 3018 (1990).
[Crossref] [PubMed]

C. Radzewicz, Z. W. Li, and M. G. Raymer, “Amplitude-stabilized chaotic light,” Phys. Rev. A 37, 2039 (1988).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, and J. Dalibard, “Stopping atoms with laser light,” Phys. Rev. Lett. 54, 992 (1985); W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Phys. Rev. Lett. 54, 996 (1985).
[Crossref] [PubMed]

D. S. Elliott, M. W. Hamilton, K. Arnett, and S. J. Smith, “Two-photon absorption from a phase-diffusing laser field,” Phys. Rev. Lett. 53, 439 (1984).
[Crossref]

Other (7)

R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1983).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

W. Demtroeder, Laser Spectroscopy (Springer-Verlag, New York, 1982).

M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1982).

J. Eschner, Institut für Experimental Physik, Universität Hamburg, 2000 Hamburg 30, Germany (personal communication).

R. H. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, New York, 1978).
[Crossref]

F. de Coulon, Signal Theory and Processing (Artech House, Dedham, UK, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the broadband laser. M1–M4 are high-reflectivity mirrors, suitable for DCM dye, and PM is the pump mirror. A Faraday rotator (Opt. Diode) is employed, which together with the half-wave plate, λ/2, forms an optical diode. The cavity round-trip time is 5.3 ns.

Fig. 2
Fig. 2

Schematic of the heterodyne experiment. The tunable reference laser (Ref. Laser) is a Coherent 699-21 laser. The broadband laser (Sig. Laser) is the signal laser. The fields are superimposed with a variable beam splitter (BS) and detected with a 1-GHz bandwidth P-I-N photodiode (Diode). The beat note is observed with a rf spectrum analyzer (r. f. SA), with a digital oscilloscope (Digit. Oscill.) being used to record the temporal output. A monochromator (λ Meter) permits the reference laser to be tuned to the broadband-laser frequency range.

Fig. 3
Fig. 3

Amplitude spectrum of the broadband laser with BRF and uncoated étalon (FSR 100 GHz) inserted. The effective resolution is 5 MHz. A computed Gaussian function has been added for comparison.

Fig. 4
Fig. 4

Rf spectrum of the heterodyne signal of the reference laser and the broadband laser. Both are fixed in frequency, and the spectrum analyser is swept from 0 to 1 GHz in 4 s. The RBW is 1 MHz, and the VBW is 10 kHz. The large background is present only when the reference-laser frequency lies within the broadband-laser spectral width. The falloff with frequency and the slow modulation are instrumental artifacts.

Fig. 5
Fig. 5

Rf spectrum of the heterodyne signal of the reference laser and our system run as a normal multimode laser. Both are fixed in frequency, and the spectrum analyzer is swept from 0 to 2 GHz in 50 ms. The RBW and the VBW are 1 MHz. The mode structure is evident.

Fig. 6
Fig. 6

Amplitude statistics of the heterodyne signal of the reference-laser field and the broadband-laser field. The oscilloscope bandwidth is 80 MHz. The form of the distribution is independent of the reference-laser frequency.

Fig. 7
Fig. 7

Output of the rf spectrum analyzer for mixing the reference laser field with the multimode laser field. The internal oscillator is fixed in frequency with a RBW and a VBW of 1 MHz.

Fig. 8
Fig. 8

Output of the rf spectrum analyzer for the mixing of the reference-laser field with the broadband-laser field. The internal oscillator is fixed in frequency with a RBW and a VBW of 1 MHz. The fluctuating signal is present at all times and for all detunings of the reference laser.

Fig. 9
Fig. 9

Rf spectrum of the intensity fluctuations of the broadband laser. The spectrum analyzer is swept from 0 to 200 MHz in 400 ms. The RBW is 100 kHz, and the VBW is 10 kHz.

Fig. 10
Fig. 10

(a) Intensity buildup of the broadband laser compared with that of the 188-MHz component shown in Fig. 9. The RBW and the VBW are 1 MHz; the AOM rise time is 0.27 μs. Note that there is a delay of ≈3 μs in the spectrum analyzer, indicating that this component builds up synchronously with the intensity. (b) Intensity buildup of the broadband laser compared with that of the 160-MHz component (see Fig. 9). The RBW and the VBW are again 1 MHz. The AOM rise time is 0.27 μs. The initiation of the 160-MHz component is correlated to the modulation in the intensity, beginning later than the 188-MHz component. In addition, its initiation time depends on the crystal position.

Fig. 11
Fig. 11

Contour map of the laser field amplitude, showing the spectrally resolved buildup of the broadband laser from the time of the Q switch up to 19.0 μs. The uncoated étalon is inserted. The pump power is 7.8 W, and the AOM rise time is 0.27 μs. The resolution is 200 MHz, with sample points every 4 GHz. The dashed line marked × represents the trajectory followed by a frequency component that is present at zero time and is shifted by 80 MHz on each round trip. The time origin is the Q-switch point (uncertainty ±0.5 μs).

Fig. 12
Fig. 12

Cross sections of the spectral buildup shown as a contour map in Fig. 11: a, at 1.5 μs; b, at 2.5 μs; c, at 4.0 μs; d, at 19.0 μs. The curves joining the experimental data are intended as guides for the eye. When part of a profile is covered by one occurring at an earlier time, this is represented by a dashed curve.

Tables (1)

Tables Icon

Table 1 Overall Performance Data at λ = 640 nm for the Various Frequency-Selective Elements

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i ( t ) = i s + i r + M ( t ) ,

Metrics