A. preliminary report on the catastrophies has been given in P. Paddon, P. Glanznig, A. D. May, and G. Stéphan, “Comportement catastrophique du domain de bistabilité d’un laser vectoriel,” Ann. Phys. (Paris) 15, 177 (1990).

G. Stéphan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703 (1985).

[CrossRef]
[PubMed]

G. Stéphan and M. Trumper, “Macroscopic parameters and line shapes of a gas laser,” Phys. Rev. A 30, 1925 (1984).

[CrossRef]

For earlier (pioneering) work see the paper by D. Lenstra, “On the polarization effects in gas lasers,” Phys. Rep. 59, 299 (1980), and references therein.

[CrossRef]

See, for example, F. Aronowitz and W. L. Lim, “Positive scale factor correction in the laser gyro,” IEEE J. Quantum Electron. QE-13, 338 (1977).

[CrossRef]

A. I. Popov and E. D. Protsenko, “Laser gain due to 5s′[1/2]10-4p′[3/2] transition in neon at λ = 3.39 μ,” Sov. J. Quantum Electron. 5, 1153 (1975).

[CrossRef]

I. P. Konovalov, A. I. Popov, and E. D. Protsenko, “Dependence of the 5s′[1/2]10-4p′[3/2]2 Ne(3.39-μ m) line width on the composition of the mixture in a He–Ne discharge,” Opt. Spektrosk. 33, 109, 198 (1972).

W. E. Lamb, “Theory of an optical maser,” Phys. Rev. A 134, 1429 (1964).

See, for example, F. Aronowitz and W. L. Lim, “Positive scale factor correction in the laser gyro,” IEEE J. Quantum Electron. QE-13, 338 (1977).

[CrossRef]

A. preliminary report on the catastrophies has been given in P. Paddon, P. Glanznig, A. D. May, and G. Stéphan, “Comportement catastrophique du domain de bistabilité d’un laser vectoriel,” Ann. Phys. (Paris) 15, 177 (1990).

G. Stéphan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703 (1985).

[CrossRef]
[PubMed]

I. P. Konovalov, A. I. Popov, and E. D. Protsenko, “Dependence of the 5s′[1/2]10-4p′[3/2]2 Ne(3.39-μ m) line width on the composition of the mixture in a He–Ne discharge,” Opt. Spektrosk. 33, 109, 198 (1972).

W. E. Lamb, “Theory of an optical maser,” Phys. Rev. A 134, 1429 (1964).

For earlier (pioneering) work see the paper by D. Lenstra, “On the polarization effects in gas lasers,” Phys. Rep. 59, 299 (1980), and references therein.

[CrossRef]

See, for example, F. Aronowitz and W. L. Lim, “Positive scale factor correction in the laser gyro,” IEEE J. Quantum Electron. QE-13, 338 (1977).

[CrossRef]

A. preliminary report on the catastrophies has been given in P. Paddon, P. Glanznig, A. D. May, and G. Stéphan, “Comportement catastrophique du domain de bistabilité d’un laser vectoriel,” Ann. Phys. (Paris) 15, 177 (1990).

A. D. May and G. Stéphan, “Stability of polarized modes in a quasi-isotropic laser,” J. Opt. Soc. Am. B 6, 2355 (1989). [There are three typographical errors in the paper. The characters fs2p9.7 should be removed from Eq. (1); the matrix V has 1 along the diagonal and −1 off the diagonal (p. 2357); and Eqs. (A6)–(A8) are each missing an overall minus sign on the right-hand side.]

[CrossRef]

G. Stéphan, A. D. May, R. E. Mueller, and B. Aissaoui, “Competition effects in the polarization of light in a quasi-isotropic laser,” J. Opt. Soc. Am. B 4, 1276 (1987).

[CrossRef]

A. D. May and G. Stéphan, “Polarization dynamics in a quasi-isotropic laser,” J. H. Eberly, L. Mandel, and E. Wolf, eds., in Coherence and Quantum Optics VI (Plenum, New York, 1990), p. 731.

[CrossRef]

A. preliminary report on the catastrophies has been given in P. Paddon, P. Glanznig, A. D. May, and G. Stéphan, “Comportement catastrophique du domain de bistabilité d’un laser vectoriel,” Ann. Phys. (Paris) 15, 177 (1990).

A. I. Popov and E. D. Protsenko, “Laser gain due to 5s′[1/2]10-4p′[3/2] transition in neon at λ = 3.39 μ,” Sov. J. Quantum Electron. 5, 1153 (1975).

[CrossRef]

I. P. Konovalov, A. I. Popov, and E. D. Protsenko, “Dependence of the 5s′[1/2]10-4p′[3/2]2 Ne(3.39-μ m) line width on the composition of the mixture in a He–Ne discharge,” Opt. Spektrosk. 33, 109, 198 (1972).

A. I. Popov and E. D. Protsenko, “Laser gain due to 5s′[1/2]10-4p′[3/2] transition in neon at λ = 3.39 μ,” Sov. J. Quantum Electron. 5, 1153 (1975).

[CrossRef]

I. P. Konovalov, A. I. Popov, and E. D. Protsenko, “Dependence of the 5s′[1/2]10-4p′[3/2]2 Ne(3.39-μ m) line width on the composition of the mixture in a He–Ne discharge,” Opt. Spektrosk. 33, 109, 198 (1972).

A. preliminary report on the catastrophies has been given in P. Paddon, P. Glanznig, A. D. May, and G. Stéphan, “Comportement catastrophique du domain de bistabilité d’un laser vectoriel,” Ann. Phys. (Paris) 15, 177 (1990).

A. D. May and G. Stéphan, “Stability of polarized modes in a quasi-isotropic laser,” J. Opt. Soc. Am. B 6, 2355 (1989). [There are three typographical errors in the paper. The characters fs2p9.7 should be removed from Eq. (1); the matrix V has 1 along the diagonal and −1 off the diagonal (p. 2357); and Eqs. (A6)–(A8) are each missing an overall minus sign on the right-hand side.]

[CrossRef]

G. Stéphan, A. D. May, R. E. Mueller, and B. Aissaoui, “Competition effects in the polarization of light in a quasi-isotropic laser,” J. Opt. Soc. Am. B 4, 1276 (1987).

[CrossRef]

G. Stéphan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703 (1985).

[CrossRef]
[PubMed]

G. Stéphan and M. Trumper, “Macroscopic parameters and line shapes of a gas laser,” Phys. Rev. A 30, 1925 (1984).

[CrossRef]

A. D. May and G. Stéphan, “Polarization dynamics in a quasi-isotropic laser,” J. H. Eberly, L. Mandel, and E. Wolf, eds., in Coherence and Quantum Optics VI (Plenum, New York, 1990), p. 731.

[CrossRef]

G. Stéphan and M. Trumper, “Macroscopic parameters and line shapes of a gas laser,” Phys. Rev. A 30, 1925 (1984).

[CrossRef]

A. preliminary report on the catastrophies has been given in P. Paddon, P. Glanznig, A. D. May, and G. Stéphan, “Comportement catastrophique du domain de bistabilité d’un laser vectoriel,” Ann. Phys. (Paris) 15, 177 (1990).

See, for example, F. Aronowitz and W. L. Lim, “Positive scale factor correction in the laser gyro,” IEEE J. Quantum Electron. QE-13, 338 (1977).

[CrossRef]

I. P. Konovalov, A. I. Popov, and E. D. Protsenko, “Dependence of the 5s′[1/2]10-4p′[3/2]2 Ne(3.39-μ m) line width on the composition of the mixture in a He–Ne discharge,” Opt. Spektrosk. 33, 109, 198 (1972).

For earlier (pioneering) work see the paper by D. Lenstra, “On the polarization effects in gas lasers,” Phys. Rep. 59, 299 (1980), and references therein.

[CrossRef]

G. Stéphan and M. Trumper, “Macroscopic parameters and line shapes of a gas laser,” Phys. Rev. A 30, 1925 (1984).

[CrossRef]

W. E. Lamb, “Theory of an optical maser,” Phys. Rev. A 134, 1429 (1964).

G. Stéphan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703 (1985).

[CrossRef]
[PubMed]

A. I. Popov and E. D. Protsenko, “Laser gain due to 5s′[1/2]10-4p′[3/2] transition in neon at λ = 3.39 μ,” Sov. J. Quantum Electron. 5, 1153 (1975).

[CrossRef]

A. D. May and G. Stéphan, “Polarization dynamics in a quasi-isotropic laser,” J. H. Eberly, L. Mandel, and E. Wolf, eds., in Coherence and Quantum Optics VI (Plenum, New York, 1990), p. 731.

[CrossRef]

Liapunov exponents determine the stability of stationary solutions of nonlinear equations. The equations are linearized in departures of the variables from their stationary value. If new variables are chosen that diagonalize the linear equations, then the coefficients are the Liapunov exponents λ. Since the equations have the form d(δv)/dt= λδv, the perturbation δv will grow or decay to zero, depending on whether λ is positive or negative.

The phase origin ϕf0would depend only on the frequency of the laser and the distance to the feedback element if the mirror other than the output–feedback mirror were scanned in the experiment.