Abstract

The quantum fluctuations in intrinsic bistability of a two-level system are calculated by means of Einstein relations. All the second moments of the dipole operators are calculated, and the statistical properties of the reaction field are studied. It is found that quantum noise that is above the standard quantum limit is inherent in the reaction field.

© 1991 Optical Society of America

Full Article  |  PDF Article
More Like This
Squeezing and trapping in three-level atoms

F. A. M. de Oliveira, B. J. Dalton, and P. L. Knight
J. Opt. Soc. Am. B 4(10) 1558-1564 (1987)

Interactions of a two-level atom with one mode of correlated two-mode field states

Christopher C. Gerry and Ronald F. Welch
J. Opt. Soc. Am. B 8(4) 868-881 (1991)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription