Abstract

A numerical study is presented of the steady-state and transient regimes in stimulated Raman scattering, including diffractive coupling of the fields and detuning of the Stokes field from resonance. In the steady-state regime, ring formation in the laser output intensity is observed as well as a ring in the Stokes output intensity when it is detuned from resonance. In the transient regime a solitonlike pulse is initiated by modulation of the phase of the input Stokes field. For Fresnel numbers between 5 and 50, we observe a simultaneous maximum of the on-axis laser and Stokes intensities after a π phase shift is introduced on the Stokes seed. At the same time the transverse profiles of the fields are narrowed and the laser intensity displays a satellite ring. It is found that the soliton remains relatively stable, although diffraction eventually leads to its decay.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription