Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects

Not Accessible

Your library or personal account may give you access

Abstract

Exact solutions are presented to the steady-state coupled-mode equations that govern the nonlinear parametric interaction of a central-frequency wave with a pair of upshifted and downshifted sidebands in isotropic single-mode optical fibers. This solution accounts for pump depletion as well for as a possible phase mismatch among the waves. The existence is predicted of eigensolutions propagating unchanged along the fiber, which may be either spatially stable or spatially unstable, depending on the total power and the propagation-constant mismatch. The presence of spatially unstable eigensolutions dramatically affects the power exchange among the three waves. The physical implications of this instability for the frequency-conversion process, as well as its potential application to all-optical switching, are discussed.

© 1991 Optical Society of America

Full Article  |  PDF Article
More Like This
Four-wave mixing in optical fibers: exact solution

Yijiang Chen
J. Opt. Soc. Am. B 6(11) 1986-1993 (1989)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (38)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved