Abstract

Laser-pumped laser characteristics of a Tm:Ho:Y3Al5O12(YAG) crystal were measured as a function of the wavelength and energy of the alexandrite-laser pump source. Laser thresholds and slope efficiencies were recorded for 765-, 780-, and 785-nm pump wavelengths. Simultaneous laser emission was observed at 2.060, 2.065, 2.097, and 2.101 μm, and the relative intensities of these peaks were measured as a function of absorbed pump energy. Changes in temporal and spectral profiles of the laser emission were observed with variations in absorbed pump energy. When measurements were made with a monolithic crystal cavity instead of an open cavity, laser emission from Ho3+ was observed at 2.097 μm, and an additional laser peak was observed that may be due to transitions of the Tm3+ ions.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Kintz, L. Esterowitz, and R. Allen, “Cw diode-pumped Tm3+, Ho3+:YAG 2.1 μ m room-temperature laser,” Electron. Lett. 23, 616 (1987).
    [CrossRef]
  2. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 μ m of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12laser at 300 K,” Opt. Lett. 12, 678 (1987).
    [CrossRef] [PubMed]
  3. G. J. Kintz, L. Esterowitz, and R. Allen, “Cascade laser emission at 2.31 and 2.08 μ m from laser diode pumped Tm:Ho:LiYF4 at room temperature,” in Tunable Solid-State Lasers, Vol. 20 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), p. 20.
  4. G. J. Quarles, A. Rosenbaum, C. L. Marquardt, and L. Esterowitz, “Efficient room-temperature operation of a flash-lamp-pumped, Cr,Tm:YAG laser at 2.01 μ m,” Opt. Lett. 15, 42 (1990).
    [CrossRef] [PubMed]
  5. L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Ho3+ in CaWO4,” Proc. IRE 50, 86 (1962).
    [CrossRef]
  6. R. L. Remski and D. J. Smith, “Temperature dependence of pulsed laser threshold in YAG:Er3+ Tm3+,Ho3+,” IEEE J. Quantum Electron. QE-6, 750 (1970).
    [CrossRef]
  7. E. P. Chicklis, C. S. Naiman, R. C. Fulweiler, D. R. Gabbe, H. P. Jenssen, and A. Linz, “High efficiency room-temperature 2.06 μ m laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119 (1971).
    [CrossRef]
  8. G. J. Kintz, R. Allen, and L. Esterowitz, “Two for one photon conversion observed in alexandrite pumped Tm3+, Ho3+:YAG at room temperature,” in Lasers and Electro-Optics, Vol. 14 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), p. 266.
  9. H. Hemmati, “2.07-μ m cw diode-laser-pumped Tm,Ho:YLiF4room-temperature laser,” Opt. Lett. 14, 435 (1989).
    [CrossRef] [PubMed]
  10. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486 (1990).
    [CrossRef] [PubMed]
  11. J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464 (1989).
    [CrossRef]
  12. J. K. Tyminski, D. M. Franich, and M. Kotka, “Gain dynamics of Tm:Ho:YAG pumped in near infrared,” J. Appl. Phys. 65, 3181 (1989).
    [CrossRef]
  13. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm:Ho:YAG,” IEEE J. Quantum Electron. 24, 924 (1988).
    [CrossRef]
  14. G. J. Kintz, I. D. Abella, and L. Esterowitz, “Upconversion coefficient measurement in Tm:Ho:YAG at room temperature,” in Proceedings of the International Conference on Lasers ’87 (STS, McLean, Va., 1988), p. 398.
  15. R. C. Stoneman and L. Esterowitz, Naval Research Laboratory, Washington, D.C. 20375-5000 (personal communication, 1990).
  16. A. Brenier, R. Moncorge, and C. Pedrini, “Fluorescence dynamics in LiYF4:Tm,Ho after 800-nm laser excitation,” in Tunable Solid State Lasers Conference, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), p. 232.
  17. T. Becker, R. Clausen, and G. Huber, “Spectroscopic and laser properties of Tm-doped YAG at 2 μ m,” in Tunable Solid State Lasers, Vol. 5 of OSA Proceedings Series, M. L. Shand and H. P. Jenssen, eds. (Optical Society of America, Washington, D.C., 1989), p. 150.

1990 (2)

1989 (3)

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464 (1989).
[CrossRef]

J. K. Tyminski, D. M. Franich, and M. Kotka, “Gain dynamics of Tm:Ho:YAG pumped in near infrared,” J. Appl. Phys. 65, 3181 (1989).
[CrossRef]

H. Hemmati, “2.07-μ m cw diode-laser-pumped Tm,Ho:YLiF4room-temperature laser,” Opt. Lett. 14, 435 (1989).
[CrossRef] [PubMed]

1988 (1)

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm:Ho:YAG,” IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

1987 (2)

1971 (1)

E. P. Chicklis, C. S. Naiman, R. C. Fulweiler, D. R. Gabbe, H. P. Jenssen, and A. Linz, “High efficiency room-temperature 2.06 μ m laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119 (1971).
[CrossRef]

1970 (1)

R. L. Remski and D. J. Smith, “Temperature dependence of pulsed laser threshold in YAG:Er3+ Tm3+,Ho3+,” IEEE J. Quantum Electron. QE-6, 750 (1970).
[CrossRef]

1962 (1)

L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Ho3+ in CaWO4,” Proc. IRE 50, 86 (1962).
[CrossRef]

Abella, I. D.

G. J. Kintz, I. D. Abella, and L. Esterowitz, “Upconversion coefficient measurement in Tm:Ho:YAG at room temperature,” in Proceedings of the International Conference on Lasers ’87 (STS, McLean, Va., 1988), p. 398.

Allen, R.

G. J. Kintz, L. Esterowitz, and R. Allen, “Cw diode-pumped Tm3+, Ho3+:YAG 2.1 μ m room-temperature laser,” Electron. Lett. 23, 616 (1987).
[CrossRef]

G. J. Kintz, L. Esterowitz, and R. Allen, “Cascade laser emission at 2.31 and 2.08 μ m from laser diode pumped Tm:Ho:LiYF4 at room temperature,” in Tunable Solid-State Lasers, Vol. 20 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), p. 20.

G. J. Kintz, R. Allen, and L. Esterowitz, “Two for one photon conversion observed in alexandrite pumped Tm3+, Ho3+:YAG at room temperature,” in Lasers and Electro-Optics, Vol. 14 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), p. 266.

Becker, T.

T. Becker, R. Clausen, and G. Huber, “Spectroscopic and laser properties of Tm-doped YAG at 2 μ m,” in Tunable Solid State Lasers, Vol. 5 of OSA Proceedings Series, M. L. Shand and H. P. Jenssen, eds. (Optical Society of America, Washington, D.C., 1989), p. 150.

Boyd, G. D.

L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Ho3+ in CaWO4,” Proc. IRE 50, 86 (1962).
[CrossRef]

Brenier, A.

A. Brenier, R. Moncorge, and C. Pedrini, “Fluorescence dynamics in LiYF4:Tm,Ho after 800-nm laser excitation,” in Tunable Solid State Lasers Conference, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), p. 232.

Byer, R. L.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm:Ho:YAG,” IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 μ m of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12laser at 300 K,” Opt. Lett. 12, 678 (1987).
[CrossRef] [PubMed]

Chicklis, E. P.

E. P. Chicklis, C. S. Naiman, R. C. Fulweiler, D. R. Gabbe, H. P. Jenssen, and A. Linz, “High efficiency room-temperature 2.06 μ m laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119 (1971).
[CrossRef]

Clausen, R.

T. Becker, R. Clausen, and G. Huber, “Spectroscopic and laser properties of Tm-doped YAG at 2 μ m,” in Tunable Solid State Lasers, Vol. 5 of OSA Proceedings Series, M. L. Shand and H. P. Jenssen, eds. (Optical Society of America, Washington, D.C., 1989), p. 150.

Esterowitz, L.

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486 (1990).
[CrossRef] [PubMed]

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, and L. Esterowitz, “Efficient room-temperature operation of a flash-lamp-pumped, Cr,Tm:YAG laser at 2.01 μ m,” Opt. Lett. 15, 42 (1990).
[CrossRef] [PubMed]

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464 (1989).
[CrossRef]

G. J. Kintz, L. Esterowitz, and R. Allen, “Cw diode-pumped Tm3+, Ho3+:YAG 2.1 μ m room-temperature laser,” Electron. Lett. 23, 616 (1987).
[CrossRef]

G. J. Kintz, L. Esterowitz, and R. Allen, “Cascade laser emission at 2.31 and 2.08 μ m from laser diode pumped Tm:Ho:LiYF4 at room temperature,” in Tunable Solid-State Lasers, Vol. 20 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), p. 20.

G. J. Kintz, R. Allen, and L. Esterowitz, “Two for one photon conversion observed in alexandrite pumped Tm3+, Ho3+:YAG at room temperature,” in Lasers and Electro-Optics, Vol. 14 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), p. 266.

G. J. Kintz, I. D. Abella, and L. Esterowitz, “Upconversion coefficient measurement in Tm:Ho:YAG at room temperature,” in Proceedings of the International Conference on Lasers ’87 (STS, McLean, Va., 1988), p. 398.

R. C. Stoneman and L. Esterowitz, Naval Research Laboratory, Washington, D.C. 20375-5000 (personal communication, 1990).

Fan, T. Y.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm:Ho:YAG,” IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 μ m of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12laser at 300 K,” Opt. Lett. 12, 678 (1987).
[CrossRef] [PubMed]

Franich, D. M.

J. K. Tyminski, D. M. Franich, and M. Kotka, “Gain dynamics of Tm:Ho:YAG pumped in near infrared,” J. Appl. Phys. 65, 3181 (1989).
[CrossRef]

Fulweiler, R. C.

E. P. Chicklis, C. S. Naiman, R. C. Fulweiler, D. R. Gabbe, H. P. Jenssen, and A. Linz, “High efficiency room-temperature 2.06 μ m laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119 (1971).
[CrossRef]

Gabbe, D. R.

E. P. Chicklis, C. S. Naiman, R. C. Fulweiler, D. R. Gabbe, H. P. Jenssen, and A. Linz, “High efficiency room-temperature 2.06 μ m laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119 (1971).
[CrossRef]

Gruber, J. B.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464 (1989).
[CrossRef]

Hemmati, H.

Hills, M. E.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464 (1989).
[CrossRef]

Huber, G.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm:Ho:YAG,” IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 μ m of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12laser at 300 K,” Opt. Lett. 12, 678 (1987).
[CrossRef] [PubMed]

T. Becker, R. Clausen, and G. Huber, “Spectroscopic and laser properties of Tm-doped YAG at 2 μ m,” in Tunable Solid State Lasers, Vol. 5 of OSA Proceedings Series, M. L. Shand and H. P. Jenssen, eds. (Optical Society of America, Washington, D.C., 1989), p. 150.

Jenssen, H. P.

E. P. Chicklis, C. S. Naiman, R. C. Fulweiler, D. R. Gabbe, H. P. Jenssen, and A. Linz, “High efficiency room-temperature 2.06 μ m laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119 (1971).
[CrossRef]

Johnson, L. F.

L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Ho3+ in CaWO4,” Proc. IRE 50, 86 (1962).
[CrossRef]

Kintz, G. J.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464 (1989).
[CrossRef]

G. J. Kintz, L. Esterowitz, and R. Allen, “Cw diode-pumped Tm3+, Ho3+:YAG 2.1 μ m room-temperature laser,” Electron. Lett. 23, 616 (1987).
[CrossRef]

G. J. Kintz, L. Esterowitz, and R. Allen, “Cascade laser emission at 2.31 and 2.08 μ m from laser diode pumped Tm:Ho:LiYF4 at room temperature,” in Tunable Solid-State Lasers, Vol. 20 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), p. 20.

G. J. Kintz, R. Allen, and L. Esterowitz, “Two for one photon conversion observed in alexandrite pumped Tm3+, Ho3+:YAG at room temperature,” in Lasers and Electro-Optics, Vol. 14 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), p. 266.

G. J. Kintz, I. D. Abella, and L. Esterowitz, “Upconversion coefficient measurement in Tm:Ho:YAG at room temperature,” in Proceedings of the International Conference on Lasers ’87 (STS, McLean, Va., 1988), p. 398.

Kotka, M.

J. K. Tyminski, D. M. Franich, and M. Kotka, “Gain dynamics of Tm:Ho:YAG pumped in near infrared,” J. Appl. Phys. 65, 3181 (1989).
[CrossRef]

Linz, A.

E. P. Chicklis, C. S. Naiman, R. C. Fulweiler, D. R. Gabbe, H. P. Jenssen, and A. Linz, “High efficiency room-temperature 2.06 μ m laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119 (1971).
[CrossRef]

Macfarlane, R. M.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464 (1989).
[CrossRef]

Marquardt, C. L.

Mitzscherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm:Ho:YAG,” IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 μ m of a diode-laser-pumped, Tm-sensitized Ho:Y3Al5O12laser at 300 K,” Opt. Lett. 12, 678 (1987).
[CrossRef] [PubMed]

Moncorge, R.

A. Brenier, R. Moncorge, and C. Pedrini, “Fluorescence dynamics in LiYF4:Tm,Ho after 800-nm laser excitation,” in Tunable Solid State Lasers Conference, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), p. 232.

Morrison, C. A.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464 (1989).
[CrossRef]

Naiman, C. S.

E. P. Chicklis, C. S. Naiman, R. C. Fulweiler, D. R. Gabbe, H. P. Jenssen, and A. Linz, “High efficiency room-temperature 2.06 μ m laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119 (1971).
[CrossRef]

Nassau, K.

L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Ho3+ in CaWO4,” Proc. IRE 50, 86 (1962).
[CrossRef]

Pedrini, C.

A. Brenier, R. Moncorge, and C. Pedrini, “Fluorescence dynamics in LiYF4:Tm,Ho after 800-nm laser excitation,” in Tunable Solid State Lasers Conference, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), p. 232.

Quarles, G. J.

G. J. Quarles, A. Rosenbaum, C. L. Marquardt, and L. Esterowitz, “Efficient room-temperature operation of a flash-lamp-pumped, Cr,Tm:YAG laser at 2.01 μ m,” Opt. Lett. 15, 42 (1990).
[CrossRef] [PubMed]

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464 (1989).
[CrossRef]

Remski, R. L.

R. L. Remski and D. J. Smith, “Temperature dependence of pulsed laser threshold in YAG:Er3+ Tm3+,Ho3+,” IEEE J. Quantum Electron. QE-6, 750 (1970).
[CrossRef]

Rosenbaum, A.

Smith, D. J.

R. L. Remski and D. J. Smith, “Temperature dependence of pulsed laser threshold in YAG:Er3+ Tm3+,Ho3+,” IEEE J. Quantum Electron. QE-6, 750 (1970).
[CrossRef]

Stoneman, R. C.

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett. 15, 486 (1990).
[CrossRef] [PubMed]

R. C. Stoneman and L. Esterowitz, Naval Research Laboratory, Washington, D.C. 20375-5000 (personal communication, 1990).

Turner, G. A.

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464 (1989).
[CrossRef]

Tyminski, J. K.

J. K. Tyminski, D. M. Franich, and M. Kotka, “Gain dynamics of Tm:Ho:YAG pumped in near infrared,” J. Appl. Phys. 65, 3181 (1989).
[CrossRef]

Appl. Phys. Lett. (1)

E. P. Chicklis, C. S. Naiman, R. C. Fulweiler, D. R. Gabbe, H. P. Jenssen, and A. Linz, “High efficiency room-temperature 2.06 μ m laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119 (1971).
[CrossRef]

Electron. Lett. (1)

G. J. Kintz, L. Esterowitz, and R. Allen, “Cw diode-pumped Tm3+, Ho3+:YAG 2.1 μ m room-temperature laser,” Electron. Lett. 23, 616 (1987).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. L. Remski and D. J. Smith, “Temperature dependence of pulsed laser threshold in YAG:Er3+ Tm3+,Ho3+,” IEEE J. Quantum Electron. QE-6, 750 (1970).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm:Ho:YAG,” IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

J. Appl. Phys. (1)

J. K. Tyminski, D. M. Franich, and M. Kotka, “Gain dynamics of Tm:Ho:YAG pumped in near infrared,” J. Appl. Phys. 65, 3181 (1989).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. B (1)

J. B. Gruber, M. E. Hills, R. M. Macfarlane, C. A. Morrison, G. A. Turner, G. J. Quarles, G. J. Kintz, and L. Esterowitz, “Spectra and energy levels of Tm3+:Y3Al5O12,” Phys. Rev. B 40, 9464 (1989).
[CrossRef]

Proc. IRE (1)

L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Ho3+ in CaWO4,” Proc. IRE 50, 86 (1962).
[CrossRef]

Other (6)

G. J. Kintz, L. Esterowitz, and R. Allen, “Cascade laser emission at 2.31 and 2.08 μ m from laser diode pumped Tm:Ho:LiYF4 at room temperature,” in Tunable Solid-State Lasers, Vol. 20 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), p. 20.

G. J. Kintz, R. Allen, and L. Esterowitz, “Two for one photon conversion observed in alexandrite pumped Tm3+, Ho3+:YAG at room temperature,” in Lasers and Electro-Optics, Vol. 14 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), p. 266.

G. J. Kintz, I. D. Abella, and L. Esterowitz, “Upconversion coefficient measurement in Tm:Ho:YAG at room temperature,” in Proceedings of the International Conference on Lasers ’87 (STS, McLean, Va., 1988), p. 398.

R. C. Stoneman and L. Esterowitz, Naval Research Laboratory, Washington, D.C. 20375-5000 (personal communication, 1990).

A. Brenier, R. Moncorge, and C. Pedrini, “Fluorescence dynamics in LiYF4:Tm,Ho after 800-nm laser excitation,” in Tunable Solid State Lasers Conference, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), p. 232.

T. Becker, R. Clausen, and G. Huber, “Spectroscopic and laser properties of Tm-doped YAG at 2 μ m,” in Tunable Solid State Lasers, Vol. 5 of OSA Proceedings Series, M. L. Shand and H. P. Jenssen, eds. (Optical Society of America, Washington, D.C., 1989), p. 150.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Room-temperature absorption spectrum of a 2.3-mm-thick Tm:Ho:YAG crystal in the region of alexandrite-laser excitation.

Fig. 2
Fig. 2

Laser excitation spectrum for the 2.1-μm emission of Tm:Ho:YAG. The numbers above the curve represent absorbed pump energy.

Fig. 3
Fig. 3

Energy threshold and slope efficiencies of Tm:Ho:YAG laser emission for different pump wavelengths: (a) 765 nm, (b) 780 nm, (c) 785 nm. The numerical results from these data are listed in Table 1. The repetition rate for the pump laser was 10 Hz.

Fig. 4
Fig. 4

Green fluorescence of Tm:Ho:YAG for different pump wavelengths: (a) 765-nm excitation, absorbed pump energy 15.4 mJ; (b) 780-nm excitation, absorbed pump energy 26.4 mJ; (c) 785-nm excitation, absorbed pump energy 28.9 mJ.

Fig. 5
Fig. 5

Excitation a spectrum for green fluorescence at 538 nm from Tm:Ho:YAG crystal.

Fig. 6
Fig. 6

Pumping diagram for Tm:Ho:YA Glaser. Upconversion may be due to cooperative energy transfer or excited-state absorption of pump photons.

Fig. 7
Fig. 7

Spectral distribution of laser emission of Tm:Ho:YAG in an external cavity as a function of absorbed pump energy.

Fig. 8
Fig. 8

Energy thresholds and slope efficiencies of Tm:Ho:YAG for different laser-emission peaks.

Fig. 9
Fig. 9

Temporal profiles of the Tm:Ho:YAG laser emission as a function of absorbed pump energy in an external-cavity configuration. The topmost curve shows the alexandrite-laser pump pulse, and the curves below it represent the Tm:Ho:YAG laser emission.

Fig. 10
Fig. 10

Temporal profiles of the Tm:Ho:YAG laser emission in a monolithic crystal cavity. (a) Alexandrite pump pulse and (b) Tm:Ho:YAG laser emission.

Tables (1)

Tables Icon

Table 1 Thresholds and Slope Efficiencies for a Tm:Ho:YAG Lasera

Metrics