Abstract

We report photorefractive, absorption, and photoconductivity measurements made on a KTa1−xNbxO3:Cu,V sample after a series of reduction and oxidation treatments. All relevant physical parameters that enter into the Kukhtarev model of the photorefractive effect are determined. Photorefractive measurements are compared with those expected from theory. The oxidation–reduction process is modeled, which permits us to determine the heat treatment that is necessary to produce a given index change and response time. We discuss approaches to optimization of the photorefractive sensitivity.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
    [CrossRef]
  2. W. Phillips, J. J. Amodei, and D. L. Staebler, “Optical and holographic properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).
  3. M. Clark, F. DiSalvo, A. M. Glass, and G. Pearson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phy. 59, 6209–6219 (1973).
    [CrossRef]
  4. W. Phillips and D. L. Staebler, “Control of the Fe2+concentration in iron-doped lithium niobate,” J. Electron. Mater. 3, 601–616 (1974).
    [CrossRef]
  5. M. B. Klein and G. C. Valley, “Beam coupling in BaTiO3at 442 nm,” J. Appl. Phys. 57, 4901–4905 (1985).
    [CrossRef]
  6. S. Ducharme and J. Feinberg, “Altering the photorefractive properties of BaTiO3by reduction and oxidation at 650°C,” J. Opt. Soc. Am. B 3, 283–292 (1986).
    [CrossRef]
  7. M. B. Klein and R. N. Schwartz, “Photorefractive effect in BaTiO3: microscopic origins,” J. Opt. Soc. Am. B 3, 293–305 (1986).
    [CrossRef]
  8. G. Rakuljic, A. Yariv, and R. Neurgaonkar, “Photorefractive properties of undoped, cerium-doped, and iron-doped single-crystal Sr0.6Ba0.4Nb2O6,” Opt. Eng. 25, 1212–1216 (1986).
    [CrossRef]
  9. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetski, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  10. G. C. Valley and M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
    [CrossRef]
  11. F. S. Chen, “A laser-induced inhomogeneity of refractive indices in KTN,” J. Appl. Phys. 38, 3418–3420 (1967).
    [CrossRef]
  12. D. von der Linde, A. M. Glass, and K. F. Rodgers, “High sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
    [CrossRef]
  13. A. Agranat, V. Leyva, and A. Yariv, “Voltage-controlled photorefractive effect in paraelectric KTa1−x Nbx O3:Cu,V,” Opt. Lett. 14, 1017–1019 (1989).
    [CrossRef] [PubMed]
  14. V. Leyva, A. Agranat, and A. Yariv, “Dependence of the photorefractive properties of KTa1−x Nbx O3:Cu,V on Cu valence state concentration,” J. Appl. Phys. 67, 7162–7165 (1990).
    [CrossRef]
  15. A. Agranat, V. Leyva, K. Sayano, and A. Yariv, “Photorefractive properties of KTa1−x Nbx O3in the paraelectric phase,” Proc. Soc. Photo-Opt. Instrum. Eng. 1148, 52–66 (1989).
  16. P. Bohac and H. Kaufmann, “KTN optical waveguides grown by liquid-phase epitaxy,” Electron. Lett. 22, 861–862 (1986).
    [CrossRef]
  17. S. Triebwasser, “Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev. 114, 63–70 (1959).
    [CrossRef]
  18. F. S. Chen, J. Geusic, S. Kurtz, J. Skinner, and S. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37, 388–398 (1966).
    [CrossRef]
  19. Y. Brada and M. Roth, “Optical absorption of KTa1−x Nbx O3single crystals,” Phys. Rev. B 39, 10402–10405 (1989).
    [CrossRef]
  20. G. Rossman, “Optical spectroscopy,” Rev. Mineralogy 18, 207–254 (1988).
  21. E. Kratzig and R. Orlowski, “Light induced transport in doped LiNbO3and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
    [CrossRef]
  22. K. Schmetzer, “Absorptionsspektroskopie und Farbe von V3+-haltigen naturlichen Oxiden und Silikaten–ein Beitrag zur Kristallchemie des Vanadiums,” Neues Jahrb. Mineral. Abh. 144, 73–106 (1982).
  23. E. Kratzig and R. Orlowski, “LiTaO3as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
    [CrossRef]
  24. R. Orlowski, L. A. Boatner, and E. Kratzig, “Photorefractive effects in the cubic phase of potassium tantalate-niobate,” Opt. Commun. 35, 45–48 (1980).
    [CrossRef]
  25. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. 48, 2909–2947 (1969).
    [CrossRef]
  26. Ph. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45 (1985).
    [CrossRef]
  27. B. A. Wechsler and M. B. Klein, “Thermodynamic point defect model of barium titanate and application to the photorefractive effect,” J. Opt. Soc. Am. B 5, 1711–1723 (1988).
    [CrossRef]
  28. L. A. Boatner, A. Kayal, and U. T. Hochli, “Electronic properties of pure and Cu-doped KTaO3,” Helv. Phys. Acta 50, 167–169 (1977).
  29. F. Rosenberger, Fundamentals of Crystal Growth I (Springer-Verlag, Berlin, 1979).
    [CrossRef]
  30. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Dover, New York, 1964).

1990 (1)

V. Leyva, A. Agranat, and A. Yariv, “Dependence of the photorefractive properties of KTa1−x Nbx O3:Cu,V on Cu valence state concentration,” J. Appl. Phys. 67, 7162–7165 (1990).
[CrossRef]

1989 (3)

A. Agranat, V. Leyva, K. Sayano, and A. Yariv, “Photorefractive properties of KTa1−x Nbx O3in the paraelectric phase,” Proc. Soc. Photo-Opt. Instrum. Eng. 1148, 52–66 (1989).

Y. Brada and M. Roth, “Optical absorption of KTa1−x Nbx O3single crystals,” Phys. Rev. B 39, 10402–10405 (1989).
[CrossRef]

A. Agranat, V. Leyva, and A. Yariv, “Voltage-controlled photorefractive effect in paraelectric KTa1−x Nbx O3:Cu,V,” Opt. Lett. 14, 1017–1019 (1989).
[CrossRef] [PubMed]

1988 (2)

1986 (4)

P. Bohac and H. Kaufmann, “KTN optical waveguides grown by liquid-phase epitaxy,” Electron. Lett. 22, 861–862 (1986).
[CrossRef]

G. Rakuljic, A. Yariv, and R. Neurgaonkar, “Photorefractive properties of undoped, cerium-doped, and iron-doped single-crystal Sr0.6Ba0.4Nb2O6,” Opt. Eng. 25, 1212–1216 (1986).
[CrossRef]

S. Ducharme and J. Feinberg, “Altering the photorefractive properties of BaTiO3by reduction and oxidation at 650°C,” J. Opt. Soc. Am. B 3, 283–292 (1986).
[CrossRef]

M. B. Klein and R. N. Schwartz, “Photorefractive effect in BaTiO3: microscopic origins,” J. Opt. Soc. Am. B 3, 293–305 (1986).
[CrossRef]

1985 (2)

Ph. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45 (1985).
[CrossRef]

M. B. Klein and G. C. Valley, “Beam coupling in BaTiO3at 442 nm,” J. Appl. Phys. 57, 4901–4905 (1985).
[CrossRef]

1983 (1)

G. C. Valley and M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
[CrossRef]

1982 (1)

K. Schmetzer, “Absorptionsspektroskopie und Farbe von V3+-haltigen naturlichen Oxiden und Silikaten–ein Beitrag zur Kristallchemie des Vanadiums,” Neues Jahrb. Mineral. Abh. 144, 73–106 (1982).

1980 (2)

R. Orlowski, L. A. Boatner, and E. Kratzig, “Photorefractive effects in the cubic phase of potassium tantalate-niobate,” Opt. Commun. 35, 45–48 (1980).
[CrossRef]

E. Kratzig and R. Orlowski, “Light induced transport in doped LiNbO3and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetski, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

1978 (1)

E. Kratzig and R. Orlowski, “LiTaO3as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
[CrossRef]

1977 (1)

L. A. Boatner, A. Kayal, and U. T. Hochli, “Electronic properties of pure and Cu-doped KTaO3,” Helv. Phys. Acta 50, 167–169 (1977).

1975 (1)

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

1974 (1)

W. Phillips and D. L. Staebler, “Control of the Fe2+concentration in iron-doped lithium niobate,” J. Electron. Mater. 3, 601–616 (1974).
[CrossRef]

1973 (1)

M. Clark, F. DiSalvo, A. M. Glass, and G. Pearson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phy. 59, 6209–6219 (1973).
[CrossRef]

1972 (1)

W. Phillips, J. J. Amodei, and D. L. Staebler, “Optical and holographic properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

1971 (1)

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. 48, 2909–2947 (1969).
[CrossRef]

1967 (1)

F. S. Chen, “A laser-induced inhomogeneity of refractive indices in KTN,” J. Appl. Phys. 38, 3418–3420 (1967).
[CrossRef]

1966 (1)

F. S. Chen, J. Geusic, S. Kurtz, J. Skinner, and S. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37, 388–398 (1966).
[CrossRef]

1959 (1)

S. Triebwasser, “Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev. 114, 63–70 (1959).
[CrossRef]

Agranat, A.

V. Leyva, A. Agranat, and A. Yariv, “Dependence of the photorefractive properties of KTa1−x Nbx O3:Cu,V on Cu valence state concentration,” J. Appl. Phys. 67, 7162–7165 (1990).
[CrossRef]

A. Agranat, V. Leyva, K. Sayano, and A. Yariv, “Photorefractive properties of KTa1−x Nbx O3in the paraelectric phase,” Proc. Soc. Photo-Opt. Instrum. Eng. 1148, 52–66 (1989).

A. Agranat, V. Leyva, and A. Yariv, “Voltage-controlled photorefractive effect in paraelectric KTa1−x Nbx O3:Cu,V,” Opt. Lett. 14, 1017–1019 (1989).
[CrossRef] [PubMed]

Amodei, J. J.

W. Phillips, J. J. Amodei, and D. L. Staebler, “Optical and holographic properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

Boatner, L. A.

R. Orlowski, L. A. Boatner, and E. Kratzig, “Photorefractive effects in the cubic phase of potassium tantalate-niobate,” Opt. Commun. 35, 45–48 (1980).
[CrossRef]

L. A. Boatner, A. Kayal, and U. T. Hochli, “Electronic properties of pure and Cu-doped KTaO3,” Helv. Phys. Acta 50, 167–169 (1977).

Bohac, P.

P. Bohac and H. Kaufmann, “KTN optical waveguides grown by liquid-phase epitaxy,” Electron. Lett. 22, 861–862 (1986).
[CrossRef]

Brada, Y.

Y. Brada and M. Roth, “Optical absorption of KTa1−x Nbx O3single crystals,” Phys. Rev. B 39, 10402–10405 (1989).
[CrossRef]

Chen, F. S.

F. S. Chen, “A laser-induced inhomogeneity of refractive indices in KTN,” J. Appl. Phys. 38, 3418–3420 (1967).
[CrossRef]

F. S. Chen, J. Geusic, S. Kurtz, J. Skinner, and S. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37, 388–398 (1966).
[CrossRef]

Clark, M.

M. Clark, F. DiSalvo, A. M. Glass, and G. Pearson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phy. 59, 6209–6219 (1973).
[CrossRef]

DiSalvo, F.

M. Clark, F. DiSalvo, A. M. Glass, and G. Pearson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phy. 59, 6209–6219 (1973).
[CrossRef]

Ducharme, S.

Feinberg, J.

Geusic, J.

F. S. Chen, J. Geusic, S. Kurtz, J. Skinner, and S. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37, 388–398 (1966).
[CrossRef]

Glass, A. M.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

M. Clark, F. DiSalvo, A. M. Glass, and G. Pearson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phy. 59, 6209–6219 (1973).
[CrossRef]

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

Gurney, R. W.

N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Dover, New York, 1964).

Hochli, U. T.

L. A. Boatner, A. Kayal, and U. T. Hochli, “Electronic properties of pure and Cu-doped KTaO3,” Helv. Phys. Acta 50, 167–169 (1977).

Huignard, J. P.

Ph. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45 (1985).
[CrossRef]

Kaufmann, H.

P. Bohac and H. Kaufmann, “KTN optical waveguides grown by liquid-phase epitaxy,” Electron. Lett. 22, 861–862 (1986).
[CrossRef]

Kayal, A.

L. A. Boatner, A. Kayal, and U. T. Hochli, “Electronic properties of pure and Cu-doped KTaO3,” Helv. Phys. Acta 50, 167–169 (1977).

Klein, M. B.

B. A. Wechsler and M. B. Klein, “Thermodynamic point defect model of barium titanate and application to the photorefractive effect,” J. Opt. Soc. Am. B 5, 1711–1723 (1988).
[CrossRef]

M. B. Klein and R. N. Schwartz, “Photorefractive effect in BaTiO3: microscopic origins,” J. Opt. Soc. Am. B 3, 293–305 (1986).
[CrossRef]

M. B. Klein and G. C. Valley, “Beam coupling in BaTiO3at 442 nm,” J. Appl. Phys. 57, 4901–4905 (1985).
[CrossRef]

G. C. Valley and M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. 48, 2909–2947 (1969).
[CrossRef]

Kratzig, E.

R. Orlowski, L. A. Boatner, and E. Kratzig, “Photorefractive effects in the cubic phase of potassium tantalate-niobate,” Opt. Commun. 35, 45–48 (1980).
[CrossRef]

E. Kratzig and R. Orlowski, “Light induced transport in doped LiNbO3and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[CrossRef]

E. Kratzig and R. Orlowski, “LiTaO3as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetski, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Kurtz, S.

F. S. Chen, J. Geusic, S. Kurtz, J. Skinner, and S. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37, 388–398 (1966).
[CrossRef]

Leyva, V.

V. Leyva, A. Agranat, and A. Yariv, “Dependence of the photorefractive properties of KTa1−x Nbx O3:Cu,V on Cu valence state concentration,” J. Appl. Phys. 67, 7162–7165 (1990).
[CrossRef]

A. Agranat, V. Leyva, and A. Yariv, “Voltage-controlled photorefractive effect in paraelectric KTa1−x Nbx O3:Cu,V,” Opt. Lett. 14, 1017–1019 (1989).
[CrossRef] [PubMed]

A. Agranat, V. Leyva, K. Sayano, and A. Yariv, “Photorefractive properties of KTa1−x Nbx O3in the paraelectric phase,” Proc. Soc. Photo-Opt. Instrum. Eng. 1148, 52–66 (1989).

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetski, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Mott, N. F.

N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Dover, New York, 1964).

Negran, T. J.

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

Neurgaonkar, R.

G. Rakuljic, A. Yariv, and R. Neurgaonkar, “Photorefractive properties of undoped, cerium-doped, and iron-doped single-crystal Sr0.6Ba0.4Nb2O6,” Opt. Eng. 25, 1212–1216 (1986).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetski, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Orlowski, R.

R. Orlowski, L. A. Boatner, and E. Kratzig, “Photorefractive effects in the cubic phase of potassium tantalate-niobate,” Opt. Commun. 35, 45–48 (1980).
[CrossRef]

E. Kratzig and R. Orlowski, “Light induced transport in doped LiNbO3and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[CrossRef]

E. Kratzig and R. Orlowski, “LiTaO3as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
[CrossRef]

Pearson, G.

M. Clark, F. DiSalvo, A. M. Glass, and G. Pearson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phy. 59, 6209–6219 (1973).
[CrossRef]

Peterson, G. E.

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

Phillips, W.

W. Phillips and D. L. Staebler, “Control of the Fe2+concentration in iron-doped lithium niobate,” J. Electron. Mater. 3, 601–616 (1974).
[CrossRef]

W. Phillips, J. J. Amodei, and D. L. Staebler, “Optical and holographic properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

Rajbenbach, H.

Ph. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45 (1985).
[CrossRef]

Rakuljic, G.

G. Rakuljic, A. Yariv, and R. Neurgaonkar, “Photorefractive properties of undoped, cerium-doped, and iron-doped single-crystal Sr0.6Ba0.4Nb2O6,” Opt. Eng. 25, 1212–1216 (1986).
[CrossRef]

Refregier, Ph.

Ph. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45 (1985).
[CrossRef]

Rodgers, K. F.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

Rosenberger, F.

F. Rosenberger, Fundamentals of Crystal Growth I (Springer-Verlag, Berlin, 1979).
[CrossRef]

Rossman, G.

G. Rossman, “Optical spectroscopy,” Rev. Mineralogy 18, 207–254 (1988).

Roth, M.

Y. Brada and M. Roth, “Optical absorption of KTa1−x Nbx O3single crystals,” Phys. Rev. B 39, 10402–10405 (1989).
[CrossRef]

Sayano, K.

A. Agranat, V. Leyva, K. Sayano, and A. Yariv, “Photorefractive properties of KTa1−x Nbx O3in the paraelectric phase,” Proc. Soc. Photo-Opt. Instrum. Eng. 1148, 52–66 (1989).

Schmetzer, K.

K. Schmetzer, “Absorptionsspektroskopie und Farbe von V3+-haltigen naturlichen Oxiden und Silikaten–ein Beitrag zur Kristallchemie des Vanadiums,” Neues Jahrb. Mineral. Abh. 144, 73–106 (1982).

Schwartz, R. N.

Skinner, J.

F. S. Chen, J. Geusic, S. Kurtz, J. Skinner, and S. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37, 388–398 (1966).
[CrossRef]

Solymar, L.

Ph. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45 (1985).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetski, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Staebler, D. L.

W. Phillips and D. L. Staebler, “Control of the Fe2+concentration in iron-doped lithium niobate,” J. Electron. Mater. 3, 601–616 (1974).
[CrossRef]

W. Phillips, J. J. Amodei, and D. L. Staebler, “Optical and holographic properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

Triebwasser, S.

S. Triebwasser, “Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev. 114, 63–70 (1959).
[CrossRef]

Valley, G. C.

M. B. Klein and G. C. Valley, “Beam coupling in BaTiO3at 442 nm,” J. Appl. Phys. 57, 4901–4905 (1985).
[CrossRef]

G. C. Valley and M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
[CrossRef]

Vinetski, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetski, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

von der Linde, D.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

Wechsler, B. A.

Wemple, S.

F. S. Chen, J. Geusic, S. Kurtz, J. Skinner, and S. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37, 388–398 (1966).
[CrossRef]

Yariv, A.

V. Leyva, A. Agranat, and A. Yariv, “Dependence of the photorefractive properties of KTa1−x Nbx O3:Cu,V on Cu valence state concentration,” J. Appl. Phys. 67, 7162–7165 (1990).
[CrossRef]

A. Agranat, V. Leyva, K. Sayano, and A. Yariv, “Photorefractive properties of KTa1−x Nbx O3in the paraelectric phase,” Proc. Soc. Photo-Opt. Instrum. Eng. 1148, 52–66 (1989).

A. Agranat, V. Leyva, and A. Yariv, “Voltage-controlled photorefractive effect in paraelectric KTa1−x Nbx O3:Cu,V,” Opt. Lett. 14, 1017–1019 (1989).
[CrossRef] [PubMed]

G. Rakuljic, A. Yariv, and R. Neurgaonkar, “Photorefractive properties of undoped, cerium-doped, and iron-doped single-crystal Sr0.6Ba0.4Nb2O6,” Opt. Eng. 25, 1212–1216 (1986).
[CrossRef]

Appl. Phys. (1)

E. Kratzig and R. Orlowski, “LiTaO3as holographic storage material,” Appl. Phys. 15, 133–139 (1978).
[CrossRef]

Appl. Phys. Lett. (2)

G. E. Peterson, A. M. Glass, and T. J. Negran, “Control of the susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130–132 (1971).
[CrossRef]

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

Bell Syst. Tech. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. 48, 2909–2947 (1969).
[CrossRef]

Electron. Lett. (1)

P. Bohac and H. Kaufmann, “KTN optical waveguides grown by liquid-phase epitaxy,” Electron. Lett. 22, 861–862 (1986).
[CrossRef]

Ferroelectrics (2)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetski, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

E. Kratzig and R. Orlowski, “Light induced transport in doped LiNbO3and LiTaO3,” Ferroelectrics 27, 241–244 (1980).
[CrossRef]

Helv. Phys. Acta (1)

L. A. Boatner, A. Kayal, and U. T. Hochli, “Electronic properties of pure and Cu-doped KTaO3,” Helv. Phys. Acta 50, 167–169 (1977).

J. Appl. Phys. (5)

F. S. Chen, “A laser-induced inhomogeneity of refractive indices in KTN,” J. Appl. Phys. 38, 3418–3420 (1967).
[CrossRef]

F. S. Chen, J. Geusic, S. Kurtz, J. Skinner, and S. Wemple, “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys. 37, 388–398 (1966).
[CrossRef]

Ph. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45 (1985).
[CrossRef]

V. Leyva, A. Agranat, and A. Yariv, “Dependence of the photorefractive properties of KTa1−x Nbx O3:Cu,V on Cu valence state concentration,” J. Appl. Phys. 67, 7162–7165 (1990).
[CrossRef]

M. B. Klein and G. C. Valley, “Beam coupling in BaTiO3at 442 nm,” J. Appl. Phys. 57, 4901–4905 (1985).
[CrossRef]

J. Chem. Phy. (1)

M. Clark, F. DiSalvo, A. M. Glass, and G. Pearson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phy. 59, 6209–6219 (1973).
[CrossRef]

J. Electron. Mater. (1)

W. Phillips and D. L. Staebler, “Control of the Fe2+concentration in iron-doped lithium niobate,” J. Electron. Mater. 3, 601–616 (1974).
[CrossRef]

J. Opt. Soc. Am. B (3)

Neues Jahrb. Mineral. Abh. (1)

K. Schmetzer, “Absorptionsspektroskopie und Farbe von V3+-haltigen naturlichen Oxiden und Silikaten–ein Beitrag zur Kristallchemie des Vanadiums,” Neues Jahrb. Mineral. Abh. 144, 73–106 (1982).

Opt. Commun. (1)

R. Orlowski, L. A. Boatner, and E. Kratzig, “Photorefractive effects in the cubic phase of potassium tantalate-niobate,” Opt. Commun. 35, 45–48 (1980).
[CrossRef]

Opt. Eng. (2)

G. Rakuljic, A. Yariv, and R. Neurgaonkar, “Photorefractive properties of undoped, cerium-doped, and iron-doped single-crystal Sr0.6Ba0.4Nb2O6,” Opt. Eng. 25, 1212–1216 (1986).
[CrossRef]

G. C. Valley and M. B. Klein, “Optimal properties of photorefractive materials for optical data processing,” Opt. Eng. 22, 704–711 (1983).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

S. Triebwasser, “Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev. 114, 63–70 (1959).
[CrossRef]

Phys. Rev. B (1)

Y. Brada and M. Roth, “Optical absorption of KTa1−x Nbx O3single crystals,” Phys. Rev. B 39, 10402–10405 (1989).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

A. Agranat, V. Leyva, K. Sayano, and A. Yariv, “Photorefractive properties of KTa1−x Nbx O3in the paraelectric phase,” Proc. Soc. Photo-Opt. Instrum. Eng. 1148, 52–66 (1989).

RCA Rev. (1)

W. Phillips, J. J. Amodei, and D. L. Staebler, “Optical and holographic properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).

Rev. Mineralogy (1)

G. Rossman, “Optical spectroscopy,” Rev. Mineralogy 18, 207–254 (1988).

Other (2)

F. Rosenberger, Fundamentals of Crystal Growth I (Springer-Verlag, Berlin, 1979).
[CrossRef]

N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Dover, New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Difference in absorption spectra between the undoped KTN sample and the KTN:CuV sample after a series of reduction and oxidation treatments. Features should be a result of the dopants. The spectrum with the largest magnitude at 410 nm corresponds to the reduction treatment. Other spectra with decreasing magnitudes at 410 nm correspond to the oxidation treatments at 400, 450, 500, 600, and 700°C.

Fig. 2
Fig. 2

Spectral dependence of the electron photoexcitation cross section, which results in an electron photoexcited from the Cu1+ ion into the conduction band. The peak at 3.0 eV corresponds to the optical excitation energy of this level.

Fig. 3
Fig. 3

Values of the mobility electron lifetime product, μτR, versus trap concentration ratio. Trap concentration was varied through a series of reduction and oxidation treatments. The dashed line represents a linear fit to the data.

Fig. 4
Fig. 4

Experimentally measured diffraction efficiencies from a photorefractive grating versus trap concentration ratio, circles, and that expected from the Kukhtarev model, curve, in paraelectric KTN:CuV All parameters arising in the model were measured independently of photorefractive measurements.

Fig. 5
Fig. 5

Experimentally measured erase rates of a photorefractive grating during readout, circles, and that expected from the Kukhtarev model, curve, versus trap concentration ratio. Erase rates are for a 42-mW/cm2, 514-nm readout beam.

Fig. 6
Fig. 6

Plot of the left-hand side of the mass action equation (12) for the oxidation–reduction process versus inverse temperature. The dashed line corresponds to K = 1.48 × 1019 Torr1/4 cm−3/2 [2.83 × 1018 atm1/4 cm−3/2] and ΔH = −0.295 eV.

Fig. 7
Fig. 7

Fraction of the Cu in the Cu2+ valence state versus partial pressure of O2 at a processing temperature of 700°C. Three doping levels are shown: [Cu] of 1.8 × 1019 cm−3, 1018 cm−3, and 1017 cm−3.

Fig. 8
Fig. 8

Experimentally measured photorefractive sensitivity versus trap concentration ratio. Also plotted is the sensitivity expected from theory for three different doping levels.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

T = ( 1 - R ) 2 exp ( - α l ) / [ 1 - R 2 exp ( - 2 α l ) ] ,
s e ( λ ) = α ct / N ,
J = e μ ( n d + τ R α ct I / h ν ) E ,
τ R = 1 / γ R [ Cu 2 + ] ,
E sc = m E q ( E 0 2 + E D 2 ) 1 / 2 [ ( E q + E D ) 2 + E 0 2 ] 1 / 2 ,
δ ( Δ n ) = n 0 3 g ( - 0 ) 2 E sc E 0 ,
η = exp ( - α l ) sin 2 [ π δ ( Δ n ) l λ cos ( θ / 2 ) ] ,
τ e = τ d i ( 1 + τ R / τ D ) 2 + ( τ R / τ E ) 2 [ 1 + τ R τ d i / ( τ D τ I ) ] ( 1 + τ R / τ D ) + ( τ R / τ E ) 2 ( τ d i / τ I ) ,
τ d i = μ n d ,
τ E = 1 K μ E 0 ,
τ D = e μ k B T K 2 ,
τ R = 1 γ R N D + ,
τ I = 1 s I / h ν + γ R n 0 ,
n d = s I ( N D - N D + ) h ν γ R N D +
Cu 1 + + ½ V O + ¼ O 2 Cu 2 + ,
4 [ Cu 1 + ] + 3 [ Cu 2 + ] + n = 2 [ V O ] + p ,
[ Cu 1 + ] [ V O ] 1 / 2 P O 2 1 / 4 / [ Cu 2 + ] = K exp ( Δ H / k T ) ,
S = d ( Δ n ) d ( α I τ e ) = n 0 3 g ( - 0 ) 2 E sc E 0 s e [ Cu 1 + ] I τ e ,
S = 4 π e n 0 3 g E sc E 0 μ h ν γ [ Cu 2 + ] ,

Metrics