Abstract

In recent years the interest in hybrid bistable devices has increased rapidly because of the possibility of using these properties for optical computing systems. Therefore we investigate optoelectronic features of various CdS layers, pointing out especially the bistability in photoconduction presented by thermo-optical hysteresis. We grow our thin (2–10-μm) CdS layers on various substrates (glass, Pyrex, and CaF2) by three methods: evaporation, close-spaced vapor transport, and spray deposition. By means of x-ray diffraction, transmission, and secondary-ion mass-spectroscopy measurements, we analyze the crystal structure, the slope of the absorption edge (which is important in attaining bistable behavior), and the impurities of our samples. From photocurrent measurements we determine the free-carrier lifetime, the photoconductivity gain, and the sensitivity of the layers. In this context a new theory is presented that gives the ratio of the surface recombination time to the free-carrier lifetime. We are most successful in exploring thermo-optical hysteresis in the case of sprayed layers. To our knowledge, this is the first case in which a room-temperature sprayed-film self-electro-optic-effect device presents the best-resolved thermo-optical hysteresis, especially in photoconductivity, when compared with recent measurements.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Haddad, M. Kretzschmar, H. Rossmann, and F. Henneberger, “Increasing absorption bistability of CdS at room temperature,” Phys. Status Solidi B 138, 235–243 (1986).
    [CrossRef]
  2. A. Witt, M. Wegener, V. G. Lyssenko, C. Klingshirn, G. Wingen, Y. Iyechika, D. Jäger, G. Müller-Vogt, H. Sitter, H. Heinrich, and H. A. MacKenzie, “An electrooptic and optoelectric bistable interconnect at 514 nm: the photothermal CdS self-electrooptic effect devices,” IEEE J. Quantum Electron. 24, 2500–2506 (1988).
    [CrossRef]
  3. A. Witt, M. Wegener, C. Klingshirn, D. Gnass, and D. Jäger, “CdS photoelectric device: modulation and optical bistability at 514 nm,” Appl. Phys. Lett. 52, 342–344 (1988).
    [CrossRef]
  4. J. Grohs, A. Schmidt, M. Kunz, C. Weber, A. Daunois, B. Schehr, A. Rupp, W. Dötter, F. Werner, and C. Klingshirn, “Nonlinear optical properties and optical bistability in CdS and ZnSe crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 39–48 (1989).
  5. C. Bouchenaki, J. Y. Bigot, A. Daunois, J. P. Zielinger, J. L. Loison, H. Nguyen Cong, and P. Chartier, “Preparation and investigation of hybrid CdS film devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 21–28 (1989).
  6. H. Haug, Optical Nonlinearities and Instabilities in Semiconductors (Academic, London, 1988).
  7. D. A. B. Miller, “Optical bistability and differential gain resulting from absorption increasing with excitation,” J. Opt. Soc. Am. B 1, 857–864 (1984).
    [CrossRef]
  8. D. A. B. Miller, A. C. Gossard, and W. Wiegmann, “Optical bistability due to increasing absorption,” Opt. Lett. 9, 162–164 (1984).
    [CrossRef] [PubMed]
  9. M. Lambsdorff, C. Dörnfeld, and C. Klingshirn, “Optical bistability in semiconductors induced by thermal effects,” Z. Phys. B 64, 409–416 (1986).
    [CrossRef]
  10. D. Dutton, “Fundamental absorption edge in cadmium sulfide,” Phys. Rev. 112, 785–792 (1958).
    [CrossRef]
  11. M. Cardona, M. Weinstein, and G. A. Wolff, “Ultraviolet reflection spectrum of cubic CdS,” Phys. Rev. 140, A663–A637 (1965).
    [CrossRef]
  12. We proved this fact by observing, after the thermal treatment, a change of the dark conductivity from (10−2–10−3) (Ω cm−1) to (10−4–10−5) (Ω cm−1).
  13. P. Chartier, J. Ebothe, N. Alonso Vante, and H. Nguyen Cong, “Photoassisted interfacial charge transfers at inhomogeneous semiconducting film–electrolyte junction in photoelectrochemical cells. Case of CdS and CdS(Al) sprayed films onto conductive glass,” J. Electroanal. Chem. 138, 381–394 (1982).
    [CrossRef]
  14. J. Ebothe, P. Chartier, and H. Nguyen Cong, “Electro-optical properties of thin CdS films by photocurrent analysis at solid-liquid junctions,” Thin Solid Films 138, 1–8 (1988).
    [CrossRef]
  15. W. H. Bloss and H. W. Schock, “CdS—Cux S thin film solar cells,” in Photovoltaic and Photoelectrochemical Solar Energy Conversion, F. Cardon, W. P. Gomes, and W. Dekeyser, eds., Vol. B69 of NATO Advanced Study Institutes Series (Plenum, New York, 1981), pp. 117–156.
    [CrossRef]
  16. S. M. Ryvkin, Photoelectric Effects in Semiconductors (Consultants Bureau, New York, 1964), Chap. 1, p. 1.
  17. C. Bouchenaki, B. Ullrich, J. P. Zielinger, H. Nguyen Cong, and P. Chartier, “Photoconduction and thermo-optical hysteresis measurements in thin CdS films,” J. Crystal Growth 101, 797–801 (1990).
    [CrossRef]
  18. D. A. Ross, Optoelectronic Devices and Optical Imaging Techniques (Macmillan, London, 1979), Chap. 3, p. 20.
  19. It is known that CdS has an n-type conductivity. A p-type conductivity was observed in only a few cases. H. R. Vydyanath and F. A. Kröger, “High-temperature electron and hole mobilities in pure and doped CdS,” J. Appl. Phys. 46, 2670–2674 (1975); M. Lichtensteiger, I. Lagnado, and H. C. Gatos, “p-type cadmium sulfide crystalline films,” Appl. Phys. Lett. 15, 418–420 (1969); B. A. Kulp and R. H. Kelley, “p-type photoconductivity and infrared quenching in electron bombarded CdS,” J. Appl. Phys. 32, 1290–1292 (1961).
    [CrossRef]
  20. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953). For an introduction to Urbach’s rule see M. V. Kurik, “Urbach rule,” Phys. Status Solidi A 8, 9–45 (1971); D. L. Dexter, “Optical properties of solids,” Nuovo Cimento Suppl. 7, 245–286 (1958); Y. Toyozawa, “A proposed model for the explanation of the Urbach rule,” Prog. Theor. Phys. (Kyoto) 22, 455–457 (1959).
    [CrossRef]
  21. We neglect the interchange by diffusion between adjacent layers, that is, parallel connected current planes.
  22. The following expression is valid: n= n0exp(−pt), with p= 1/τSR+ 1/τph.
  23. The same expression can be obtained by assuming that τ= τSR+ τph[1 − exp(−z/Ld)] and solving ∫0dτα exp(-αz)dz.
  24. H. B. DeVore, “Spectral distribution of photoconductivity,” Phys. Rev. 102, 86–91 (1956).
    [CrossRef]
  25. M. Cardona and G. Harbeke, “Optical properties and band structure of wurtzite-type crystals and rutile,” Phys. Rev. 137, A1467–A1476 (1965).
    [CrossRef]
  26. V. V. Sobolev, V. I. Donetskikh, and E. F. Zagainov, “Direct precision method for detection of excitons in II–VI and III–V crystals at room and liquid nitrogen temperatures,” Sov. Phys. Semicond. 12, 646–652 (1978).
  27. R. H. Bube, “Infrared quenching and a unified description of photoconductivity phenomena in cadmium sulfide and selenide,” Phys. Rev. 99, 1105 (1955).
    [CrossRef]
  28. N. V. Korsunskaya, N. M. Krolevets, I. V. Markevich, T. V. Torchinskaya, and M. K. Sheinkman, “Photoluminescence and photoconductivity of CdS:Li single crystals,” Sov. Phys. Semicond. 10, 176–178 (1976).
  29. J. E. Ralph, “Photoluminescence of CdS:Cu doped by diffusion,” Phys. Status Solidi A 53, 611–615 (1979).
    [CrossRef]
  30. A. V. Bobyl’, I. B. Ermolovich, G. S. Pekar, and M. K. Sheinkman, “Effect of nickel on the electrical, photoelectrical and luminescent properties of cadmium sulfide,” J. Appl. Spectrosc. (USSR) 28, 682–686 (1978).
    [CrossRef]
  31. R. H. Bube, “Comparison of surface-excited and volume-excited photoconduction in cadmium sulfide crystals,” Phys. Rev. 101, 1668–1676 (1956).
    [CrossRef]

1990 (1)

C. Bouchenaki, B. Ullrich, J. P. Zielinger, H. Nguyen Cong, and P. Chartier, “Photoconduction and thermo-optical hysteresis measurements in thin CdS films,” J. Crystal Growth 101, 797–801 (1990).
[CrossRef]

1989 (2)

J. Grohs, A. Schmidt, M. Kunz, C. Weber, A. Daunois, B. Schehr, A. Rupp, W. Dötter, F. Werner, and C. Klingshirn, “Nonlinear optical properties and optical bistability in CdS and ZnSe crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 39–48 (1989).

C. Bouchenaki, J. Y. Bigot, A. Daunois, J. P. Zielinger, J. L. Loison, H. Nguyen Cong, and P. Chartier, “Preparation and investigation of hybrid CdS film devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 21–28 (1989).

1988 (3)

A. Witt, M. Wegener, V. G. Lyssenko, C. Klingshirn, G. Wingen, Y. Iyechika, D. Jäger, G. Müller-Vogt, H. Sitter, H. Heinrich, and H. A. MacKenzie, “An electrooptic and optoelectric bistable interconnect at 514 nm: the photothermal CdS self-electrooptic effect devices,” IEEE J. Quantum Electron. 24, 2500–2506 (1988).
[CrossRef]

A. Witt, M. Wegener, C. Klingshirn, D. Gnass, and D. Jäger, “CdS photoelectric device: modulation and optical bistability at 514 nm,” Appl. Phys. Lett. 52, 342–344 (1988).
[CrossRef]

J. Ebothe, P. Chartier, and H. Nguyen Cong, “Electro-optical properties of thin CdS films by photocurrent analysis at solid-liquid junctions,” Thin Solid Films 138, 1–8 (1988).
[CrossRef]

1986 (2)

I. Haddad, M. Kretzschmar, H. Rossmann, and F. Henneberger, “Increasing absorption bistability of CdS at room temperature,” Phys. Status Solidi B 138, 235–243 (1986).
[CrossRef]

M. Lambsdorff, C. Dörnfeld, and C. Klingshirn, “Optical bistability in semiconductors induced by thermal effects,” Z. Phys. B 64, 409–416 (1986).
[CrossRef]

1984 (2)

1982 (1)

P. Chartier, J. Ebothe, N. Alonso Vante, and H. Nguyen Cong, “Photoassisted interfacial charge transfers at inhomogeneous semiconducting film–electrolyte junction in photoelectrochemical cells. Case of CdS and CdS(Al) sprayed films onto conductive glass,” J. Electroanal. Chem. 138, 381–394 (1982).
[CrossRef]

1979 (1)

J. E. Ralph, “Photoluminescence of CdS:Cu doped by diffusion,” Phys. Status Solidi A 53, 611–615 (1979).
[CrossRef]

1978 (2)

A. V. Bobyl’, I. B. Ermolovich, G. S. Pekar, and M. K. Sheinkman, “Effect of nickel on the electrical, photoelectrical and luminescent properties of cadmium sulfide,” J. Appl. Spectrosc. (USSR) 28, 682–686 (1978).
[CrossRef]

V. V. Sobolev, V. I. Donetskikh, and E. F. Zagainov, “Direct precision method for detection of excitons in II–VI and III–V crystals at room and liquid nitrogen temperatures,” Sov. Phys. Semicond. 12, 646–652 (1978).

1976 (1)

N. V. Korsunskaya, N. M. Krolevets, I. V. Markevich, T. V. Torchinskaya, and M. K. Sheinkman, “Photoluminescence and photoconductivity of CdS:Li single crystals,” Sov. Phys. Semicond. 10, 176–178 (1976).

1975 (1)

It is known that CdS has an n-type conductivity. A p-type conductivity was observed in only a few cases. H. R. Vydyanath and F. A. Kröger, “High-temperature electron and hole mobilities in pure and doped CdS,” J. Appl. Phys. 46, 2670–2674 (1975); M. Lichtensteiger, I. Lagnado, and H. C. Gatos, “p-type cadmium sulfide crystalline films,” Appl. Phys. Lett. 15, 418–420 (1969); B. A. Kulp and R. H. Kelley, “p-type photoconductivity and infrared quenching in electron bombarded CdS,” J. Appl. Phys. 32, 1290–1292 (1961).
[CrossRef]

1965 (2)

M. Cardona and G. Harbeke, “Optical properties and band structure of wurtzite-type crystals and rutile,” Phys. Rev. 137, A1467–A1476 (1965).
[CrossRef]

M. Cardona, M. Weinstein, and G. A. Wolff, “Ultraviolet reflection spectrum of cubic CdS,” Phys. Rev. 140, A663–A637 (1965).
[CrossRef]

1958 (1)

D. Dutton, “Fundamental absorption edge in cadmium sulfide,” Phys. Rev. 112, 785–792 (1958).
[CrossRef]

1956 (2)

H. B. DeVore, “Spectral distribution of photoconductivity,” Phys. Rev. 102, 86–91 (1956).
[CrossRef]

R. H. Bube, “Comparison of surface-excited and volume-excited photoconduction in cadmium sulfide crystals,” Phys. Rev. 101, 1668–1676 (1956).
[CrossRef]

1955 (1)

R. H. Bube, “Infrared quenching and a unified description of photoconductivity phenomena in cadmium sulfide and selenide,” Phys. Rev. 99, 1105 (1955).
[CrossRef]

1953 (1)

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953). For an introduction to Urbach’s rule see M. V. Kurik, “Urbach rule,” Phys. Status Solidi A 8, 9–45 (1971); D. L. Dexter, “Optical properties of solids,” Nuovo Cimento Suppl. 7, 245–286 (1958); Y. Toyozawa, “A proposed model for the explanation of the Urbach rule,” Prog. Theor. Phys. (Kyoto) 22, 455–457 (1959).
[CrossRef]

Alonso Vante, N.

P. Chartier, J. Ebothe, N. Alonso Vante, and H. Nguyen Cong, “Photoassisted interfacial charge transfers at inhomogeneous semiconducting film–electrolyte junction in photoelectrochemical cells. Case of CdS and CdS(Al) sprayed films onto conductive glass,” J. Electroanal. Chem. 138, 381–394 (1982).
[CrossRef]

Bigot, J. Y.

C. Bouchenaki, J. Y. Bigot, A. Daunois, J. P. Zielinger, J. L. Loison, H. Nguyen Cong, and P. Chartier, “Preparation and investigation of hybrid CdS film devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 21–28 (1989).

Bloss, W. H.

W. H. Bloss and H. W. Schock, “CdS—Cux S thin film solar cells,” in Photovoltaic and Photoelectrochemical Solar Energy Conversion, F. Cardon, W. P. Gomes, and W. Dekeyser, eds., Vol. B69 of NATO Advanced Study Institutes Series (Plenum, New York, 1981), pp. 117–156.
[CrossRef]

Bobyl’, A. V.

A. V. Bobyl’, I. B. Ermolovich, G. S. Pekar, and M. K. Sheinkman, “Effect of nickel on the electrical, photoelectrical and luminescent properties of cadmium sulfide,” J. Appl. Spectrosc. (USSR) 28, 682–686 (1978).
[CrossRef]

Bouchenaki, C.

C. Bouchenaki, B. Ullrich, J. P. Zielinger, H. Nguyen Cong, and P. Chartier, “Photoconduction and thermo-optical hysteresis measurements in thin CdS films,” J. Crystal Growth 101, 797–801 (1990).
[CrossRef]

C. Bouchenaki, J. Y. Bigot, A. Daunois, J. P. Zielinger, J. L. Loison, H. Nguyen Cong, and P. Chartier, “Preparation and investigation of hybrid CdS film devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 21–28 (1989).

Bube, R. H.

R. H. Bube, “Comparison of surface-excited and volume-excited photoconduction in cadmium sulfide crystals,” Phys. Rev. 101, 1668–1676 (1956).
[CrossRef]

R. H. Bube, “Infrared quenching and a unified description of photoconductivity phenomena in cadmium sulfide and selenide,” Phys. Rev. 99, 1105 (1955).
[CrossRef]

Cardona, M.

M. Cardona, M. Weinstein, and G. A. Wolff, “Ultraviolet reflection spectrum of cubic CdS,” Phys. Rev. 140, A663–A637 (1965).
[CrossRef]

M. Cardona and G. Harbeke, “Optical properties and band structure of wurtzite-type crystals and rutile,” Phys. Rev. 137, A1467–A1476 (1965).
[CrossRef]

Chartier, P.

C. Bouchenaki, B. Ullrich, J. P. Zielinger, H. Nguyen Cong, and P. Chartier, “Photoconduction and thermo-optical hysteresis measurements in thin CdS films,” J. Crystal Growth 101, 797–801 (1990).
[CrossRef]

C. Bouchenaki, J. Y. Bigot, A. Daunois, J. P. Zielinger, J. L. Loison, H. Nguyen Cong, and P. Chartier, “Preparation and investigation of hybrid CdS film devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 21–28 (1989).

J. Ebothe, P. Chartier, and H. Nguyen Cong, “Electro-optical properties of thin CdS films by photocurrent analysis at solid-liquid junctions,” Thin Solid Films 138, 1–8 (1988).
[CrossRef]

P. Chartier, J. Ebothe, N. Alonso Vante, and H. Nguyen Cong, “Photoassisted interfacial charge transfers at inhomogeneous semiconducting film–electrolyte junction in photoelectrochemical cells. Case of CdS and CdS(Al) sprayed films onto conductive glass,” J. Electroanal. Chem. 138, 381–394 (1982).
[CrossRef]

Daunois, A.

C. Bouchenaki, J. Y. Bigot, A. Daunois, J. P. Zielinger, J. L. Loison, H. Nguyen Cong, and P. Chartier, “Preparation and investigation of hybrid CdS film devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 21–28 (1989).

J. Grohs, A. Schmidt, M. Kunz, C. Weber, A. Daunois, B. Schehr, A. Rupp, W. Dötter, F. Werner, and C. Klingshirn, “Nonlinear optical properties and optical bistability in CdS and ZnSe crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 39–48 (1989).

DeVore, H. B.

H. B. DeVore, “Spectral distribution of photoconductivity,” Phys. Rev. 102, 86–91 (1956).
[CrossRef]

Donetskikh, V. I.

V. V. Sobolev, V. I. Donetskikh, and E. F. Zagainov, “Direct precision method for detection of excitons in II–VI and III–V crystals at room and liquid nitrogen temperatures,” Sov. Phys. Semicond. 12, 646–652 (1978).

Dörnfeld, C.

M. Lambsdorff, C. Dörnfeld, and C. Klingshirn, “Optical bistability in semiconductors induced by thermal effects,” Z. Phys. B 64, 409–416 (1986).
[CrossRef]

Dötter, W.

J. Grohs, A. Schmidt, M. Kunz, C. Weber, A. Daunois, B. Schehr, A. Rupp, W. Dötter, F. Werner, and C. Klingshirn, “Nonlinear optical properties and optical bistability in CdS and ZnSe crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 39–48 (1989).

Dutton, D.

D. Dutton, “Fundamental absorption edge in cadmium sulfide,” Phys. Rev. 112, 785–792 (1958).
[CrossRef]

Ebothe, J.

J. Ebothe, P. Chartier, and H. Nguyen Cong, “Electro-optical properties of thin CdS films by photocurrent analysis at solid-liquid junctions,” Thin Solid Films 138, 1–8 (1988).
[CrossRef]

P. Chartier, J. Ebothe, N. Alonso Vante, and H. Nguyen Cong, “Photoassisted interfacial charge transfers at inhomogeneous semiconducting film–electrolyte junction in photoelectrochemical cells. Case of CdS and CdS(Al) sprayed films onto conductive glass,” J. Electroanal. Chem. 138, 381–394 (1982).
[CrossRef]

Ermolovich, I. B.

A. V. Bobyl’, I. B. Ermolovich, G. S. Pekar, and M. K. Sheinkman, “Effect of nickel on the electrical, photoelectrical and luminescent properties of cadmium sulfide,” J. Appl. Spectrosc. (USSR) 28, 682–686 (1978).
[CrossRef]

Gnass, D.

A. Witt, M. Wegener, C. Klingshirn, D. Gnass, and D. Jäger, “CdS photoelectric device: modulation and optical bistability at 514 nm,” Appl. Phys. Lett. 52, 342–344 (1988).
[CrossRef]

Gossard, A. C.

Grohs, J.

J. Grohs, A. Schmidt, M. Kunz, C. Weber, A. Daunois, B. Schehr, A. Rupp, W. Dötter, F. Werner, and C. Klingshirn, “Nonlinear optical properties and optical bistability in CdS and ZnSe crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 39–48 (1989).

Haddad, I.

I. Haddad, M. Kretzschmar, H. Rossmann, and F. Henneberger, “Increasing absorption bistability of CdS at room temperature,” Phys. Status Solidi B 138, 235–243 (1986).
[CrossRef]

Harbeke, G.

M. Cardona and G. Harbeke, “Optical properties and band structure of wurtzite-type crystals and rutile,” Phys. Rev. 137, A1467–A1476 (1965).
[CrossRef]

Haug, H.

H. Haug, Optical Nonlinearities and Instabilities in Semiconductors (Academic, London, 1988).

Heinrich, H.

A. Witt, M. Wegener, V. G. Lyssenko, C. Klingshirn, G. Wingen, Y. Iyechika, D. Jäger, G. Müller-Vogt, H. Sitter, H. Heinrich, and H. A. MacKenzie, “An electrooptic and optoelectric bistable interconnect at 514 nm: the photothermal CdS self-electrooptic effect devices,” IEEE J. Quantum Electron. 24, 2500–2506 (1988).
[CrossRef]

Henneberger, F.

I. Haddad, M. Kretzschmar, H. Rossmann, and F. Henneberger, “Increasing absorption bistability of CdS at room temperature,” Phys. Status Solidi B 138, 235–243 (1986).
[CrossRef]

Iyechika, Y.

A. Witt, M. Wegener, V. G. Lyssenko, C. Klingshirn, G. Wingen, Y. Iyechika, D. Jäger, G. Müller-Vogt, H. Sitter, H. Heinrich, and H. A. MacKenzie, “An electrooptic and optoelectric bistable interconnect at 514 nm: the photothermal CdS self-electrooptic effect devices,” IEEE J. Quantum Electron. 24, 2500–2506 (1988).
[CrossRef]

Jäger, D.

A. Witt, M. Wegener, V. G. Lyssenko, C. Klingshirn, G. Wingen, Y. Iyechika, D. Jäger, G. Müller-Vogt, H. Sitter, H. Heinrich, and H. A. MacKenzie, “An electrooptic and optoelectric bistable interconnect at 514 nm: the photothermal CdS self-electrooptic effect devices,” IEEE J. Quantum Electron. 24, 2500–2506 (1988).
[CrossRef]

A. Witt, M. Wegener, C. Klingshirn, D. Gnass, and D. Jäger, “CdS photoelectric device: modulation and optical bistability at 514 nm,” Appl. Phys. Lett. 52, 342–344 (1988).
[CrossRef]

Klingshirn, C.

J. Grohs, A. Schmidt, M. Kunz, C. Weber, A. Daunois, B. Schehr, A. Rupp, W. Dötter, F. Werner, and C. Klingshirn, “Nonlinear optical properties and optical bistability in CdS and ZnSe crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 39–48 (1989).

A. Witt, M. Wegener, C. Klingshirn, D. Gnass, and D. Jäger, “CdS photoelectric device: modulation and optical bistability at 514 nm,” Appl. Phys. Lett. 52, 342–344 (1988).
[CrossRef]

A. Witt, M. Wegener, V. G. Lyssenko, C. Klingshirn, G. Wingen, Y. Iyechika, D. Jäger, G. Müller-Vogt, H. Sitter, H. Heinrich, and H. A. MacKenzie, “An electrooptic and optoelectric bistable interconnect at 514 nm: the photothermal CdS self-electrooptic effect devices,” IEEE J. Quantum Electron. 24, 2500–2506 (1988).
[CrossRef]

M. Lambsdorff, C. Dörnfeld, and C. Klingshirn, “Optical bistability in semiconductors induced by thermal effects,” Z. Phys. B 64, 409–416 (1986).
[CrossRef]

Korsunskaya, N. V.

N. V. Korsunskaya, N. M. Krolevets, I. V. Markevich, T. V. Torchinskaya, and M. K. Sheinkman, “Photoluminescence and photoconductivity of CdS:Li single crystals,” Sov. Phys. Semicond. 10, 176–178 (1976).

Kretzschmar, M.

I. Haddad, M. Kretzschmar, H. Rossmann, and F. Henneberger, “Increasing absorption bistability of CdS at room temperature,” Phys. Status Solidi B 138, 235–243 (1986).
[CrossRef]

Kröger, F. A.

It is known that CdS has an n-type conductivity. A p-type conductivity was observed in only a few cases. H. R. Vydyanath and F. A. Kröger, “High-temperature electron and hole mobilities in pure and doped CdS,” J. Appl. Phys. 46, 2670–2674 (1975); M. Lichtensteiger, I. Lagnado, and H. C. Gatos, “p-type cadmium sulfide crystalline films,” Appl. Phys. Lett. 15, 418–420 (1969); B. A. Kulp and R. H. Kelley, “p-type photoconductivity and infrared quenching in electron bombarded CdS,” J. Appl. Phys. 32, 1290–1292 (1961).
[CrossRef]

Krolevets, N. M.

N. V. Korsunskaya, N. M. Krolevets, I. V. Markevich, T. V. Torchinskaya, and M. K. Sheinkman, “Photoluminescence and photoconductivity of CdS:Li single crystals,” Sov. Phys. Semicond. 10, 176–178 (1976).

Kunz, M.

J. Grohs, A. Schmidt, M. Kunz, C. Weber, A. Daunois, B. Schehr, A. Rupp, W. Dötter, F. Werner, and C. Klingshirn, “Nonlinear optical properties and optical bistability in CdS and ZnSe crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 39–48 (1989).

Lambsdorff, M.

M. Lambsdorff, C. Dörnfeld, and C. Klingshirn, “Optical bistability in semiconductors induced by thermal effects,” Z. Phys. B 64, 409–416 (1986).
[CrossRef]

Loison, J. L.

C. Bouchenaki, J. Y. Bigot, A. Daunois, J. P. Zielinger, J. L. Loison, H. Nguyen Cong, and P. Chartier, “Preparation and investigation of hybrid CdS film devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 21–28 (1989).

Lyssenko, V. G.

A. Witt, M. Wegener, V. G. Lyssenko, C. Klingshirn, G. Wingen, Y. Iyechika, D. Jäger, G. Müller-Vogt, H. Sitter, H. Heinrich, and H. A. MacKenzie, “An electrooptic and optoelectric bistable interconnect at 514 nm: the photothermal CdS self-electrooptic effect devices,” IEEE J. Quantum Electron. 24, 2500–2506 (1988).
[CrossRef]

MacKenzie, H. A.

A. Witt, M. Wegener, V. G. Lyssenko, C. Klingshirn, G. Wingen, Y. Iyechika, D. Jäger, G. Müller-Vogt, H. Sitter, H. Heinrich, and H. A. MacKenzie, “An electrooptic and optoelectric bistable interconnect at 514 nm: the photothermal CdS self-electrooptic effect devices,” IEEE J. Quantum Electron. 24, 2500–2506 (1988).
[CrossRef]

Markevich, I. V.

N. V. Korsunskaya, N. M. Krolevets, I. V. Markevich, T. V. Torchinskaya, and M. K. Sheinkman, “Photoluminescence and photoconductivity of CdS:Li single crystals,” Sov. Phys. Semicond. 10, 176–178 (1976).

Miller, D. A. B.

Müller-Vogt, G.

A. Witt, M. Wegener, V. G. Lyssenko, C. Klingshirn, G. Wingen, Y. Iyechika, D. Jäger, G. Müller-Vogt, H. Sitter, H. Heinrich, and H. A. MacKenzie, “An electrooptic and optoelectric bistable interconnect at 514 nm: the photothermal CdS self-electrooptic effect devices,” IEEE J. Quantum Electron. 24, 2500–2506 (1988).
[CrossRef]

Nguyen Cong, H.

C. Bouchenaki, B. Ullrich, J. P. Zielinger, H. Nguyen Cong, and P. Chartier, “Photoconduction and thermo-optical hysteresis measurements in thin CdS films,” J. Crystal Growth 101, 797–801 (1990).
[CrossRef]

C. Bouchenaki, J. Y. Bigot, A. Daunois, J. P. Zielinger, J. L. Loison, H. Nguyen Cong, and P. Chartier, “Preparation and investigation of hybrid CdS film devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 21–28 (1989).

J. Ebothe, P. Chartier, and H. Nguyen Cong, “Electro-optical properties of thin CdS films by photocurrent analysis at solid-liquid junctions,” Thin Solid Films 138, 1–8 (1988).
[CrossRef]

P. Chartier, J. Ebothe, N. Alonso Vante, and H. Nguyen Cong, “Photoassisted interfacial charge transfers at inhomogeneous semiconducting film–electrolyte junction in photoelectrochemical cells. Case of CdS and CdS(Al) sprayed films onto conductive glass,” J. Electroanal. Chem. 138, 381–394 (1982).
[CrossRef]

Pekar, G. S.

A. V. Bobyl’, I. B. Ermolovich, G. S. Pekar, and M. K. Sheinkman, “Effect of nickel on the electrical, photoelectrical and luminescent properties of cadmium sulfide,” J. Appl. Spectrosc. (USSR) 28, 682–686 (1978).
[CrossRef]

Ralph, J. E.

J. E. Ralph, “Photoluminescence of CdS:Cu doped by diffusion,” Phys. Status Solidi A 53, 611–615 (1979).
[CrossRef]

Ross, D. A.

D. A. Ross, Optoelectronic Devices and Optical Imaging Techniques (Macmillan, London, 1979), Chap. 3, p. 20.

Rossmann, H.

I. Haddad, M. Kretzschmar, H. Rossmann, and F. Henneberger, “Increasing absorption bistability of CdS at room temperature,” Phys. Status Solidi B 138, 235–243 (1986).
[CrossRef]

Rupp, A.

J. Grohs, A. Schmidt, M. Kunz, C. Weber, A. Daunois, B. Schehr, A. Rupp, W. Dötter, F. Werner, and C. Klingshirn, “Nonlinear optical properties and optical bistability in CdS and ZnSe crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 39–48 (1989).

Ryvkin, S. M.

S. M. Ryvkin, Photoelectric Effects in Semiconductors (Consultants Bureau, New York, 1964), Chap. 1, p. 1.

Schehr, B.

J. Grohs, A. Schmidt, M. Kunz, C. Weber, A. Daunois, B. Schehr, A. Rupp, W. Dötter, F. Werner, and C. Klingshirn, “Nonlinear optical properties and optical bistability in CdS and ZnSe crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 39–48 (1989).

Schmidt, A.

J. Grohs, A. Schmidt, M. Kunz, C. Weber, A. Daunois, B. Schehr, A. Rupp, W. Dötter, F. Werner, and C. Klingshirn, “Nonlinear optical properties and optical bistability in CdS and ZnSe crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 39–48 (1989).

Schock, H. W.

W. H. Bloss and H. W. Schock, “CdS—Cux S thin film solar cells,” in Photovoltaic and Photoelectrochemical Solar Energy Conversion, F. Cardon, W. P. Gomes, and W. Dekeyser, eds., Vol. B69 of NATO Advanced Study Institutes Series (Plenum, New York, 1981), pp. 117–156.
[CrossRef]

Sheinkman, M. K.

A. V. Bobyl’, I. B. Ermolovich, G. S. Pekar, and M. K. Sheinkman, “Effect of nickel on the electrical, photoelectrical and luminescent properties of cadmium sulfide,” J. Appl. Spectrosc. (USSR) 28, 682–686 (1978).
[CrossRef]

N. V. Korsunskaya, N. M. Krolevets, I. V. Markevich, T. V. Torchinskaya, and M. K. Sheinkman, “Photoluminescence and photoconductivity of CdS:Li single crystals,” Sov. Phys. Semicond. 10, 176–178 (1976).

Sitter, H.

A. Witt, M. Wegener, V. G. Lyssenko, C. Klingshirn, G. Wingen, Y. Iyechika, D. Jäger, G. Müller-Vogt, H. Sitter, H. Heinrich, and H. A. MacKenzie, “An electrooptic and optoelectric bistable interconnect at 514 nm: the photothermal CdS self-electrooptic effect devices,” IEEE J. Quantum Electron. 24, 2500–2506 (1988).
[CrossRef]

Sobolev, V. V.

V. V. Sobolev, V. I. Donetskikh, and E. F. Zagainov, “Direct precision method for detection of excitons in II–VI and III–V crystals at room and liquid nitrogen temperatures,” Sov. Phys. Semicond. 12, 646–652 (1978).

Torchinskaya, T. V.

N. V. Korsunskaya, N. M. Krolevets, I. V. Markevich, T. V. Torchinskaya, and M. K. Sheinkman, “Photoluminescence and photoconductivity of CdS:Li single crystals,” Sov. Phys. Semicond. 10, 176–178 (1976).

Ullrich, B.

C. Bouchenaki, B. Ullrich, J. P. Zielinger, H. Nguyen Cong, and P. Chartier, “Photoconduction and thermo-optical hysteresis measurements in thin CdS films,” J. Crystal Growth 101, 797–801 (1990).
[CrossRef]

Urbach, F.

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953). For an introduction to Urbach’s rule see M. V. Kurik, “Urbach rule,” Phys. Status Solidi A 8, 9–45 (1971); D. L. Dexter, “Optical properties of solids,” Nuovo Cimento Suppl. 7, 245–286 (1958); Y. Toyozawa, “A proposed model for the explanation of the Urbach rule,” Prog. Theor. Phys. (Kyoto) 22, 455–457 (1959).
[CrossRef]

Vydyanath, H. R.

It is known that CdS has an n-type conductivity. A p-type conductivity was observed in only a few cases. H. R. Vydyanath and F. A. Kröger, “High-temperature electron and hole mobilities in pure and doped CdS,” J. Appl. Phys. 46, 2670–2674 (1975); M. Lichtensteiger, I. Lagnado, and H. C. Gatos, “p-type cadmium sulfide crystalline films,” Appl. Phys. Lett. 15, 418–420 (1969); B. A. Kulp and R. H. Kelley, “p-type photoconductivity and infrared quenching in electron bombarded CdS,” J. Appl. Phys. 32, 1290–1292 (1961).
[CrossRef]

Weber, C.

J. Grohs, A. Schmidt, M. Kunz, C. Weber, A. Daunois, B. Schehr, A. Rupp, W. Dötter, F. Werner, and C. Klingshirn, “Nonlinear optical properties and optical bistability in CdS and ZnSe crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 39–48 (1989).

Wegener, M.

A. Witt, M. Wegener, C. Klingshirn, D. Gnass, and D. Jäger, “CdS photoelectric device: modulation and optical bistability at 514 nm,” Appl. Phys. Lett. 52, 342–344 (1988).
[CrossRef]

A. Witt, M. Wegener, V. G. Lyssenko, C. Klingshirn, G. Wingen, Y. Iyechika, D. Jäger, G. Müller-Vogt, H. Sitter, H. Heinrich, and H. A. MacKenzie, “An electrooptic and optoelectric bistable interconnect at 514 nm: the photothermal CdS self-electrooptic effect devices,” IEEE J. Quantum Electron. 24, 2500–2506 (1988).
[CrossRef]

Weinstein, M.

M. Cardona, M. Weinstein, and G. A. Wolff, “Ultraviolet reflection spectrum of cubic CdS,” Phys. Rev. 140, A663–A637 (1965).
[CrossRef]

Werner, F.

J. Grohs, A. Schmidt, M. Kunz, C. Weber, A. Daunois, B. Schehr, A. Rupp, W. Dötter, F. Werner, and C. Klingshirn, “Nonlinear optical properties and optical bistability in CdS and ZnSe crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 39–48 (1989).

Wiegmann, W.

Wingen, G.

A. Witt, M. Wegener, V. G. Lyssenko, C. Klingshirn, G. Wingen, Y. Iyechika, D. Jäger, G. Müller-Vogt, H. Sitter, H. Heinrich, and H. A. MacKenzie, “An electrooptic and optoelectric bistable interconnect at 514 nm: the photothermal CdS self-electrooptic effect devices,” IEEE J. Quantum Electron. 24, 2500–2506 (1988).
[CrossRef]

Witt, A.

A. Witt, M. Wegener, V. G. Lyssenko, C. Klingshirn, G. Wingen, Y. Iyechika, D. Jäger, G. Müller-Vogt, H. Sitter, H. Heinrich, and H. A. MacKenzie, “An electrooptic and optoelectric bistable interconnect at 514 nm: the photothermal CdS self-electrooptic effect devices,” IEEE J. Quantum Electron. 24, 2500–2506 (1988).
[CrossRef]

A. Witt, M. Wegener, C. Klingshirn, D. Gnass, and D. Jäger, “CdS photoelectric device: modulation and optical bistability at 514 nm,” Appl. Phys. Lett. 52, 342–344 (1988).
[CrossRef]

Wolff, G. A.

M. Cardona, M. Weinstein, and G. A. Wolff, “Ultraviolet reflection spectrum of cubic CdS,” Phys. Rev. 140, A663–A637 (1965).
[CrossRef]

Zagainov, E. F.

V. V. Sobolev, V. I. Donetskikh, and E. F. Zagainov, “Direct precision method for detection of excitons in II–VI and III–V crystals at room and liquid nitrogen temperatures,” Sov. Phys. Semicond. 12, 646–652 (1978).

Zielinger, J. P.

C. Bouchenaki, B. Ullrich, J. P. Zielinger, H. Nguyen Cong, and P. Chartier, “Photoconduction and thermo-optical hysteresis measurements in thin CdS films,” J. Crystal Growth 101, 797–801 (1990).
[CrossRef]

C. Bouchenaki, J. Y. Bigot, A. Daunois, J. P. Zielinger, J. L. Loison, H. Nguyen Cong, and P. Chartier, “Preparation and investigation of hybrid CdS film devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 21–28 (1989).

Appl. Phys. Lett. (1)

A. Witt, M. Wegener, C. Klingshirn, D. Gnass, and D. Jäger, “CdS photoelectric device: modulation and optical bistability at 514 nm,” Appl. Phys. Lett. 52, 342–344 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Witt, M. Wegener, V. G. Lyssenko, C. Klingshirn, G. Wingen, Y. Iyechika, D. Jäger, G. Müller-Vogt, H. Sitter, H. Heinrich, and H. A. MacKenzie, “An electrooptic and optoelectric bistable interconnect at 514 nm: the photothermal CdS self-electrooptic effect devices,” IEEE J. Quantum Electron. 24, 2500–2506 (1988).
[CrossRef]

J. Appl. Phys. (1)

It is known that CdS has an n-type conductivity. A p-type conductivity was observed in only a few cases. H. R. Vydyanath and F. A. Kröger, “High-temperature electron and hole mobilities in pure and doped CdS,” J. Appl. Phys. 46, 2670–2674 (1975); M. Lichtensteiger, I. Lagnado, and H. C. Gatos, “p-type cadmium sulfide crystalline films,” Appl. Phys. Lett. 15, 418–420 (1969); B. A. Kulp and R. H. Kelley, “p-type photoconductivity and infrared quenching in electron bombarded CdS,” J. Appl. Phys. 32, 1290–1292 (1961).
[CrossRef]

J. Appl. Spectrosc. (USSR) (1)

A. V. Bobyl’, I. B. Ermolovich, G. S. Pekar, and M. K. Sheinkman, “Effect of nickel on the electrical, photoelectrical and luminescent properties of cadmium sulfide,” J. Appl. Spectrosc. (USSR) 28, 682–686 (1978).
[CrossRef]

J. Crystal Growth (1)

C. Bouchenaki, B. Ullrich, J. P. Zielinger, H. Nguyen Cong, and P. Chartier, “Photoconduction and thermo-optical hysteresis measurements in thin CdS films,” J. Crystal Growth 101, 797–801 (1990).
[CrossRef]

J. Electroanal. Chem. (1)

P. Chartier, J. Ebothe, N. Alonso Vante, and H. Nguyen Cong, “Photoassisted interfacial charge transfers at inhomogeneous semiconducting film–electrolyte junction in photoelectrochemical cells. Case of CdS and CdS(Al) sprayed films onto conductive glass,” J. Electroanal. Chem. 138, 381–394 (1982).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. (7)

D. Dutton, “Fundamental absorption edge in cadmium sulfide,” Phys. Rev. 112, 785–792 (1958).
[CrossRef]

M. Cardona, M. Weinstein, and G. A. Wolff, “Ultraviolet reflection spectrum of cubic CdS,” Phys. Rev. 140, A663–A637 (1965).
[CrossRef]

R. H. Bube, “Comparison of surface-excited and volume-excited photoconduction in cadmium sulfide crystals,” Phys. Rev. 101, 1668–1676 (1956).
[CrossRef]

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953). For an introduction to Urbach’s rule see M. V. Kurik, “Urbach rule,” Phys. Status Solidi A 8, 9–45 (1971); D. L. Dexter, “Optical properties of solids,” Nuovo Cimento Suppl. 7, 245–286 (1958); Y. Toyozawa, “A proposed model for the explanation of the Urbach rule,” Prog. Theor. Phys. (Kyoto) 22, 455–457 (1959).
[CrossRef]

H. B. DeVore, “Spectral distribution of photoconductivity,” Phys. Rev. 102, 86–91 (1956).
[CrossRef]

M. Cardona and G. Harbeke, “Optical properties and band structure of wurtzite-type crystals and rutile,” Phys. Rev. 137, A1467–A1476 (1965).
[CrossRef]

R. H. Bube, “Infrared quenching and a unified description of photoconductivity phenomena in cadmium sulfide and selenide,” Phys. Rev. 99, 1105 (1955).
[CrossRef]

Phys. Status Solidi A (1)

J. E. Ralph, “Photoluminescence of CdS:Cu doped by diffusion,” Phys. Status Solidi A 53, 611–615 (1979).
[CrossRef]

Phys. Status Solidi B (1)

I. Haddad, M. Kretzschmar, H. Rossmann, and F. Henneberger, “Increasing absorption bistability of CdS at room temperature,” Phys. Status Solidi B 138, 235–243 (1986).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

J. Grohs, A. Schmidt, M. Kunz, C. Weber, A. Daunois, B. Schehr, A. Rupp, W. Dötter, F. Werner, and C. Klingshirn, “Nonlinear optical properties and optical bistability in CdS and ZnSe crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 39–48 (1989).

C. Bouchenaki, J. Y. Bigot, A. Daunois, J. P. Zielinger, J. L. Loison, H. Nguyen Cong, and P. Chartier, “Preparation and investigation of hybrid CdS film devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 1127, 21–28 (1989).

Sov. Phys. Semicond. (2)

N. V. Korsunskaya, N. M. Krolevets, I. V. Markevich, T. V. Torchinskaya, and M. K. Sheinkman, “Photoluminescence and photoconductivity of CdS:Li single crystals,” Sov. Phys. Semicond. 10, 176–178 (1976).

V. V. Sobolev, V. I. Donetskikh, and E. F. Zagainov, “Direct precision method for detection of excitons in II–VI and III–V crystals at room and liquid nitrogen temperatures,” Sov. Phys. Semicond. 12, 646–652 (1978).

Thin Solid Films (1)

J. Ebothe, P. Chartier, and H. Nguyen Cong, “Electro-optical properties of thin CdS films by photocurrent analysis at solid-liquid junctions,” Thin Solid Films 138, 1–8 (1988).
[CrossRef]

Z. Phys. B (1)

M. Lambsdorff, C. Dörnfeld, and C. Klingshirn, “Optical bistability in semiconductors induced by thermal effects,” Z. Phys. B 64, 409–416 (1986).
[CrossRef]

Other (8)

H. Haug, Optical Nonlinearities and Instabilities in Semiconductors (Academic, London, 1988).

W. H. Bloss and H. W. Schock, “CdS—Cux S thin film solar cells,” in Photovoltaic and Photoelectrochemical Solar Energy Conversion, F. Cardon, W. P. Gomes, and W. Dekeyser, eds., Vol. B69 of NATO Advanced Study Institutes Series (Plenum, New York, 1981), pp. 117–156.
[CrossRef]

S. M. Ryvkin, Photoelectric Effects in Semiconductors (Consultants Bureau, New York, 1964), Chap. 1, p. 1.

We proved this fact by observing, after the thermal treatment, a change of the dark conductivity from (10−2–10−3) (Ω cm−1) to (10−4–10−5) (Ω cm−1).

D. A. Ross, Optoelectronic Devices and Optical Imaging Techniques (Macmillan, London, 1979), Chap. 3, p. 20.

We neglect the interchange by diffusion between adjacent layers, that is, parallel connected current planes.

The following expression is valid: n= n0exp(−pt), with p= 1/τSR+ 1/τph.

The same expression can be obtained by assuming that τ= τSR+ τph[1 − exp(−z/Ld)] and solving ∫0dτα exp(-αz)dz.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Absorption edges at 300 K. A, CSVT sample with a rise of 0.93/kT. B, Spray-deposited layer with 0.49/kT. C, evaporated film after annealing with an increased steepness of 0.31/kT; D, before thermal treatment with 0.23/kT.

Fig. 2
Fig. 2

Sample surfaces: a, evaporated; b, epitaxial; c, sprayed. Cracks on the CSVT surface are plainly observable.

Fig. 3
Fig. 3

CSVT setup. Two separately tunable 500-W halogen lamps as heat sources, the substrate, and the spherical mirrors are placed as indicated. The growth occurs in the evaporation chamber.

Fig. 4
Fig. 4

Schematic of the spray-depositing setup. The substrate is heated to 380°C. The temperature is controlled with a Pt–PtRh thermocouple, providing feedback to the power supply. CdS is deposited on Pyrex through a pressure-regulated spray nozzle.

Fig. 5
Fig. 5

Measured (solid curve) and calculated (dashed curve) photoresponse of a sprayed layer. The calculation is performed by using Eqs. (8)(10) and (20) and the following parameters: Ld = 1 μm, d = 5 μm, σ = 0.7, Eg = 2.44 eV, and τSR/τph = 0.4.

Fig. 6
Fig. 6

a, Electrical and b, electro-optical bistability detected on a sprayed film with 37 mW of power (528 nm) at 300 K. The hysteresis occurs in a clockwise fashion.

Fig. 7
Fig. 7

Electrical bistability for various laser intensities at room temperature. The higher the laser power, the lower the voltage required for observing the loop.

Fig. 8
Fig. 8

When the sample temperature increases, the photocurrent becomes larger or decreases, depending on specific sample parameters. Every thin film has its own critical temperature Tc at which the derivation sign (dIph/dT) changes.

Fig. 9
Fig. 9

Optoelectronic bistability at 300 K. The behavior is consistent with that shown in Figs. 6a and 7; here the voltage is employed for hysteresis shifting.

Fig. 10
Fig. 10

0002 Response of evaporated, sprayed, and epitaxial layers. In the last case the signal is a factor of ≈500 stronger than in other samples.

Fig. 11
Fig. 11

SIMS measurements carried out on a, evaporated; b, CSVT; and c, sprayed films. For the epitaxial layer, only the signals from Cd and S are constant as a function of thickness. The In on the left-hand side of each plot indicates the contacts, and the strong peak on the right-hand side of each plot arises from the substrate.

Fig. 12
Fig. 12

Photocurrent response of a spray-deposited film at 300 K.

Fig. 13
Fig. 13

Photocurrent response of an epitaxial film at 300 K.

Tables (2)

Tables Icon

Table 1 Calculated Values of the Free-Carrier Lifetime τph, Optical Gain Gph, and Sensitivity S for CdS Layers

Tables Icon

Table 2 Free-Carrier-to-Surface-Lifetime Ratios for CdS Films

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

CdCl 2 + SC ( NH 2 ) 2 + 2 H 2 O 380° C CdS ( s ) + CO 2 ( g ) + 2 NH 4 Cl ( g ) .
Δ G = q Δ n A l μ n ,
Δ n = η N τ ph A l
I ph = V Δ σ = V q η N τ ph l 2 μ n ,
τ ph = I ph l 2 q V η N μ n ,
m n m p μ p μ n 0.03.
G ph = μ n V l 2 τ ph .
S = η G ph E g .
α ( E ) = A 0 ( E - E g ) 1 / 2 ,
α ( E ) = K 0 exp [ σ k T ( E - E g ) ] ,
E ch = k T + 2 E g 2 .
G ( z ) = I 0 ω α ( E ) exp [ - α ( E ) z ] ,
j = q [ G ( z ) - R ( z ) ] d z .
z [ R ( z ) G ( z ) ] = - 1 L d [ R ( z ) G ( z ) ] ,
R ( z ) G ( z ) = C exp ( - z / L d ) .
G ( z ) = R ( surface , z ) + R ( bulk , z ) + R ( impurity , z ) .
G ( z ) = n ( z ) ( p 1 + p 2 ) ,
G ( 0 ) = R ( 0 ) ( 1 + τ SR τ ph ) .
R ( z ) G ( z ) = ( 1 + τ SR τ ph ) - 1 exp ( - z / L d ) .
I ph = A 0 d d j ( z ) d z d z ,
d j ( z ) = q [ G ( z ) - R ( z ) ] d z
I ph = I 0 ω A q ( [ 1 - exp ( - α d ) ] - ( 1 + τ SR τ ph ) - 1 α L d α L d + 1 × { 1 - exp [ - d ( α + 1 / L d ) ] } ) .
1 - exp ( - α d ) - α L d α L d + 1 { 1 - exp [ d ( α + 1 / L d ) ] } = 0.
P V s C - T s - T o τ = 0 ,
P = P in [ 1 - T r ( T s ) - R ( T s ) ] + i V ,
E g ( T o + Δ T ) = E g ( T o ) - ( 4.1 × 10 - 4 ) Δ T .
I ph ( Δ T 2 ) = 1.1 I ph ( Δ T 1 ) .
I ph ( Δ T 2 ) = 1.2 I ph ( Δ T 1 ) .

Metrics