Abstract

We present the results of studies of fiber ring reflectors that are pulse excited in the negative dispersion regime. An intensity-dependent fiber switch is proposed for improved thresholding and pulse output characteristics over those previously reported. Schemes for fiber switches relying on solitary-wave collision-induced phase shifts are also discussed. A pulse regenerator and logic gates are proposed, each capable of correcting timing drifts.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lattes, H. A. Haus, F. J. Leonberger, and E. P. Ippen, IEEE J. Quantum Electron. QE-19, 1718–1723 (1983).
    [Crossref]
  2. K. Otsuka, Opt. Lett. 8, 471–473 (1988).
    [Crossref]
  3. N. J. Doran, D. S. Forrester, and B. K. Nayar, Electron. Lett. 25, 267–269 (1989).
    [Crossref]
  4. N. J. Doran and D. Wood, Opt. Lett. 13, 56–58 (1988).
    [Crossref] [PubMed]
  5. K. J. Blow, N. J. Doran, and B. K. Nayar, Opt. Lett. 14, 754–757 (1989).
    [Crossref] [PubMed]
  6. M. N. Islam, E. R. Sunderman, R. H. Stolen, W. Pleibel, and J. R. Simpson, Opt. Lett. 14, 811–813 (1989).
    [Crossref] [PubMed]
  7. C. R. Menyuk, J. Opt. Soc. Am. B 5, 392–402 (1988).
    [Crossref]
  8. T. R. Taha and M. J. Ablowitz, J. Comput. Phys. 55, 203–215 (1984).
    [Crossref]
  9. N. J. Doran, K. J. Blow, and D. Wood, Proc. Soc. Photo-Opt. Instrum. Eng. 836, 238–243 (1987).
  10. L. Mollenauer, R. Stolen, and J. Gordon, Phys. Rev. Lett. 45, 1095–1098 (1980).
    [Crossref]
  11. K. Suzuki and M. Nakazawa, Electron. Lett. (to be published).
  12. A. Hasegawa, Opt. Lett. 8, 650–652 (1983).
    [Crossref] [PubMed]
  13. L. F. Mollenauer, R. H. Stolen, and M. N. Islam, Opt. Lett. 10, 229–231 (1985).
    [Crossref] [PubMed]
  14. L. F. Mollenauer and K. Smith, Opt. Lett. 13, 675–677 (1988).
    [Crossref]
  15. Y. Aoki, IEEE J. Lightwave Technol. 6, 1225–1239 (1988).
    [Crossref]
  16. M. J. O’Mahony, IEEE J. Lightwave Technol. 6, 531–544 (1988).
    [Crossref]
  17. T. Saitoh and T. Mukai, IEEE J. Lightwave Technol. 6, 1656–1664 (1988).
    [Crossref]
  18. J. P. Gordon and H. A. Haus, Opt. Lett. 11, 665–667 (1986).
    [Crossref] [PubMed]

1989 (3)

1988 (7)

C. R. Menyuk, J. Opt. Soc. Am. B 5, 392–402 (1988).
[Crossref]

N. J. Doran and D. Wood, Opt. Lett. 13, 56–58 (1988).
[Crossref] [PubMed]

K. Otsuka, Opt. Lett. 8, 471–473 (1988).
[Crossref]

L. F. Mollenauer and K. Smith, Opt. Lett. 13, 675–677 (1988).
[Crossref]

Y. Aoki, IEEE J. Lightwave Technol. 6, 1225–1239 (1988).
[Crossref]

M. J. O’Mahony, IEEE J. Lightwave Technol. 6, 531–544 (1988).
[Crossref]

T. Saitoh and T. Mukai, IEEE J. Lightwave Technol. 6, 1656–1664 (1988).
[Crossref]

1987 (1)

N. J. Doran, K. J. Blow, and D. Wood, Proc. Soc. Photo-Opt. Instrum. Eng. 836, 238–243 (1987).

1986 (1)

1985 (1)

1984 (1)

T. R. Taha and M. J. Ablowitz, J. Comput. Phys. 55, 203–215 (1984).
[Crossref]

1983 (2)

A. Lattes, H. A. Haus, F. J. Leonberger, and E. P. Ippen, IEEE J. Quantum Electron. QE-19, 1718–1723 (1983).
[Crossref]

A. Hasegawa, Opt. Lett. 8, 650–652 (1983).
[Crossref] [PubMed]

1980 (1)

L. Mollenauer, R. Stolen, and J. Gordon, Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

Ablowitz, M. J.

T. R. Taha and M. J. Ablowitz, J. Comput. Phys. 55, 203–215 (1984).
[Crossref]

Aoki, Y.

Y. Aoki, IEEE J. Lightwave Technol. 6, 1225–1239 (1988).
[Crossref]

Blow, K. J.

K. J. Blow, N. J. Doran, and B. K. Nayar, Opt. Lett. 14, 754–757 (1989).
[Crossref] [PubMed]

N. J. Doran, K. J. Blow, and D. Wood, Proc. Soc. Photo-Opt. Instrum. Eng. 836, 238–243 (1987).

Doran, N. J.

K. J. Blow, N. J. Doran, and B. K. Nayar, Opt. Lett. 14, 754–757 (1989).
[Crossref] [PubMed]

N. J. Doran, D. S. Forrester, and B. K. Nayar, Electron. Lett. 25, 267–269 (1989).
[Crossref]

N. J. Doran and D. Wood, Opt. Lett. 13, 56–58 (1988).
[Crossref] [PubMed]

N. J. Doran, K. J. Blow, and D. Wood, Proc. Soc. Photo-Opt. Instrum. Eng. 836, 238–243 (1987).

Forrester, D. S.

N. J. Doran, D. S. Forrester, and B. K. Nayar, Electron. Lett. 25, 267–269 (1989).
[Crossref]

Gordon, J.

L. Mollenauer, R. Stolen, and J. Gordon, Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

Gordon, J. P.

Hasegawa, A.

Haus, H. A.

J. P. Gordon and H. A. Haus, Opt. Lett. 11, 665–667 (1986).
[Crossref] [PubMed]

A. Lattes, H. A. Haus, F. J. Leonberger, and E. P. Ippen, IEEE J. Quantum Electron. QE-19, 1718–1723 (1983).
[Crossref]

Ippen, E. P.

A. Lattes, H. A. Haus, F. J. Leonberger, and E. P. Ippen, IEEE J. Quantum Electron. QE-19, 1718–1723 (1983).
[Crossref]

Islam, M. N.

Lattes, A.

A. Lattes, H. A. Haus, F. J. Leonberger, and E. P. Ippen, IEEE J. Quantum Electron. QE-19, 1718–1723 (1983).
[Crossref]

Leonberger, F. J.

A. Lattes, H. A. Haus, F. J. Leonberger, and E. P. Ippen, IEEE J. Quantum Electron. QE-19, 1718–1723 (1983).
[Crossref]

Menyuk, C. R.

Mollenauer, L.

L. Mollenauer, R. Stolen, and J. Gordon, Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

Mollenauer, L. F.

Mukai, T.

T. Saitoh and T. Mukai, IEEE J. Lightwave Technol. 6, 1656–1664 (1988).
[Crossref]

Nakazawa, M.

K. Suzuki and M. Nakazawa, Electron. Lett. (to be published).

Nayar, B. K.

N. J. Doran, D. S. Forrester, and B. K. Nayar, Electron. Lett. 25, 267–269 (1989).
[Crossref]

K. J. Blow, N. J. Doran, and B. K. Nayar, Opt. Lett. 14, 754–757 (1989).
[Crossref] [PubMed]

O’Mahony, M. J.

M. J. O’Mahony, IEEE J. Lightwave Technol. 6, 531–544 (1988).
[Crossref]

Otsuka, K.

Pleibel, W.

Saitoh, T.

T. Saitoh and T. Mukai, IEEE J. Lightwave Technol. 6, 1656–1664 (1988).
[Crossref]

Simpson, J. R.

Smith, K.

Stolen, R.

L. Mollenauer, R. Stolen, and J. Gordon, Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

Stolen, R. H.

Sunderman, E. R.

Suzuki, K.

K. Suzuki and M. Nakazawa, Electron. Lett. (to be published).

Taha, T. R.

T. R. Taha and M. J. Ablowitz, J. Comput. Phys. 55, 203–215 (1984).
[Crossref]

Wood, D.

N. J. Doran and D. Wood, Opt. Lett. 13, 56–58 (1988).
[Crossref] [PubMed]

N. J. Doran, K. J. Blow, and D. Wood, Proc. Soc. Photo-Opt. Instrum. Eng. 836, 238–243 (1987).

Electron. Lett. (1)

N. J. Doran, D. S. Forrester, and B. K. Nayar, Electron. Lett. 25, 267–269 (1989).
[Crossref]

IEEE J. Lightwave Technol. (3)

Y. Aoki, IEEE J. Lightwave Technol. 6, 1225–1239 (1988).
[Crossref]

M. J. O’Mahony, IEEE J. Lightwave Technol. 6, 531–544 (1988).
[Crossref]

T. Saitoh and T. Mukai, IEEE J. Lightwave Technol. 6, 1656–1664 (1988).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Lattes, H. A. Haus, F. J. Leonberger, and E. P. Ippen, IEEE J. Quantum Electron. QE-19, 1718–1723 (1983).
[Crossref]

J. Comput. Phys. (1)

T. R. Taha and M. J. Ablowitz, J. Comput. Phys. 55, 203–215 (1984).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (8)

Phys. Rev. Lett. (1)

L. Mollenauer, R. Stolen, and J. Gordon, Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

N. J. Doran, K. J. Blow, and D. Wood, Proc. Soc. Photo-Opt. Instrum. Eng. 836, 238–243 (1987).

Other (1)

K. Suzuki and M. Nakazawa, Electron. Lett. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Computed and experimental autocorrelations in the positive dispersion regime. The theoretical plots [(a)–(c)] show the input Pulse (1), the transmitted puls (2), and the reflected pulse (3). Only the reflected pulse experimental autocorrelations are shown [(d)–(f)].

Fig. 2
Fig. 2

Proposed fiber loop intensity switch with rotated birefringence axes.

Fig. 3
Fig. 3

Output pulse energy versus input pulse energy. The curve is computed from Eqs. (2) and (3). The points are computed from simulations.

Fig. 4
Fig. 4

Transmitted and reflected intensity profiles for normalized input energies of 3.5, 3.0, and 0.5 shown in plots (a), (b), and (c), respectively. The input pulse is shown for comparison (d).

Fig. 5
Fig. 5

Proposed simple ring interferometer and gate employing solitary-wave collisions with birefringent fiber sections (six sections shown). This device can be used as a pulse regenerator. The X’s indicate fiber splices. PBS, polarizing beam splitter.

Fig. 6
Fig. 6

Phase shift of one pulse, accumulated through 14 solitary-wave collisions, as a function of distance. The phase is in radians. The X’s indicate fiber splice locations.

Fig. 7
Fig. 7

Predicted pulse profiles after traversing a 14-section loop: (a) control (at input), (b) half-signal after 14 collisions. Plots (c) and (d) are the same as (a) and (b) but with noisy, degraded control. The solid curve is the amplitude. The dotted curve is the collision induced phase in units of π radians.

Fig. 8
Fig. 8

Simple ring interferometer xor gate configuration. The gate is regenerative and has fan-out.

Fig. 9
Fig. 9

Alternative xor gate configuration. Note that both the signal and control pulses enter through the same input port.

Fig. 10
Fig. 10

Proposed regenerative and gate with fan-out, utilizing solitary-wave collisions. Two loops (cf. Fig. 5) are in series, with a nonreciprocal element between the loops. A and B are the incoming pulses, while C is a locally generated higher-intensity pulse.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

- i u x = 1 2 u t t + ( u 2 + α v 2 ) u , - i ( v x - σ v t ) = 1 2 v t t + ( v 2 + α u 2 ) v ,
σ = 2 π Δ n ( 0.5673 τ ) / ( λ 2 D ) ,
ϕ = { 2 ( A - ½ ) 2 z , A 1 / 2 0 , 0 A < 1 / 2 .
ϕ ( device ) = z / 2 [ 1 - ( 2 2 - 2 ) I ] ,
z = 2 π / [ I - ( 2 2 - 2 ) I ] .

Metrics