Abstract

Dielectric breakdown induced in water by Nd: YAG laser pulses is considered experimentally and theoretically. The effect appears to be due to electron avalanche ionization. The aspects of this process considered here are the following: (i) The dependence of the breakdown probability on the laser field. At high fields, electron interaction with molecular (Raman) vibrations or with collective molecular motions occurs. (ii) Bragg scattering, which contributes to keeping the electron motion in phase with the optical field. (iii) The role of the electron mobility, which contributes to stabilizing the process. (iv) The generation of the electrons that start the avalanche in relation to different laser-pulse durations and irradiances.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. De Michelis, “Laser induced gas breakdown: a bibliographical review,” IEEE J. Quantum Electron. QE-5, 188–202 (1969).
    [CrossRef]
  2. Yu. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8, 650–654 (1966) [Usp. Fiz. Nauk 87, 29–36 (1965)].
    [CrossRef]
  3. A. J. Glass, A. H. Guenther, “Laser induced damage of optical elements—a status report,” Appl. Opt. 12, 637–649 (1973).
    [CrossRef] [PubMed]
  4. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
    [CrossRef]
  5. P. A. Barnes, K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13, 282–284 (1968).
    [CrossRef]
  6. A. Vogel, W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
    [CrossRef]
  7. D. Aron-Rosa, J. J. Aron, J. Griesemann, R. Thyzel, “Use of the neodymium:YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant. Soc. 6, 352–354 (1980).
    [PubMed]
  8. F. Fankhauser, P. Roussel, J. Steffen, E. Van der Zypen, A. Cherenkova, “Clinical studies on the efficiency of high power laser radiation upon some structure of the anterior segment of the human eye: first experiments of the treatment of some pathological conditions of the anterior segment of the eye by means of a Q-switched laser system,” Int. J. Ophthalmol. 3, 129–139 (1981).
    [CrossRef]
  9. M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser photodisruptors: damage mechanisms, instrument design and safety,” Ophthalmologica 90, 973–991 (1983).
  10. S. P. Dretler, “Laser lithotripsy: a review of 20 years of research and clinical applications,” Lasers Surg. Med. 8, 341–356 (1988).
    [CrossRef] [PubMed]
  11. C. A. Puliafito, R. F. Steinert, “Short pulsed Nd:YAG laser microsurgery of the eye: biophysical considerations,” IEEE J. Quantum Electron. QE-20, 1442–1448 (1984).
    [CrossRef]
  12. F. Docchio, L. Dossi, C. A. Sacchi, “Q-switched Nd:YAG laser irradiation of the eye and related phenomena: an experimental study. I: Optical breakdown determination for liquids and membranes,” Laser Life Sci. 1, 87–103 (1986).
  13. F. Docchio, C. A. Sacchi, J. Marshall, “Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations,” Lasers Ophthalmol. 1, 83–93 (1986).
  14. M. Bass, H. H. Barrett, “Avalanche breakdown and the probabilistic nature of laser-induced damage,” IEEE J. Quantum Electron. QE-8, 338–343 (1972).
    [CrossRef]
  15. W. Shockley, “Problems related to P-N junctions in silicon,” Czech. J. Phys. B 11, 81–86 (1961); Solid-State Electron. 2, 35–40 (1961).
    [CrossRef]
  16. E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett. 19, 495–497 (1971).
    [CrossRef]
  17. M. Zahn, Y. Ohki, D. B. Fenneman, R. J. Grisphover, V. H. Gehman, “Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design,” Proc. IEEE 74, 1182–1220 (1986).
    [CrossRef]
  18. P. A. Wolff, “Theory of electron multiplication in silicon and germanium,” Phys. Rev. 95, 1415–1420 (1954).
    [CrossRef]
  19. G. A. Baraff, “Distribution functions and ionization rates for hot electrons in semiconductors,” Phys. Rev. 128, 2507–2517 (1962).
    [CrossRef]
  20. L. V. Keldysh, “Concerning the theory of impact ionization in semiconductors,” Sov. Phys. JETP 21, 1135–1144 (1965).
  21. B. K. Ridley “Lucky-drift mechanism for impact ionisation in semiconductors,” J. Phys. C 16, 3373–3388 (1983).
    [CrossRef]
  22. R. Seitz, “On the theory of electron multiplication in crystals,” Phys. Rev. 76, 1376–1393 (1949).
    [CrossRef]
  23. B. N. Brockhouse, “Structure dynamics of water by neutron spectrometry,” Nuovo Cimento Suppl. IX, 47–75 (1958).
  24. A. H. Narten, H. A. Levy, “Liquid water: molecular correlation functions from x-ray diffraction,” J. Chem. Phys. 55, 2263–2269 (1971).
    [CrossRef]
  25. E. Kálmán, G. Pálinkás, P. Kovács, “Liquid water. I: Electron scattering,” Mol. Phys. 34, 505–524 (1977).
    [CrossRef]
  26. G. Pálinkás, E. Kádlmán, P. Kovács, “Liquid water. II: Experimental atom pair-correlation functions of liquid D2O,” Mol. Phys. 34, 525–537 (1977).
    [CrossRef]
  27. D. Grand, A. Bernas, E. Amouyal, “Photoionization of aqueous indole; conduction band edge and energy gap in liquid water,” Chem. Phys. 44, 73–79 (1979).
    [CrossRef]
  28. J. W. Boyle, J. A. Ghormley, C. J. Hochanadel, J. F. Riley, “Production of hydrated electrons by flash photolysis of liquid water with light in the first continuum,” J. Phys. Chem. 73, 2886–2890 (1969).
    [CrossRef]
  29. Z. Cardeny, J. Tauc, “Hot-carrier thermalization in amorphous silicon,” Phys. Rev. Lett. 46, 1223–1226 (1981).
    [CrossRef]
  30. G. Ascarelli, “Experimental detection of collective modes in a polar liquid: application to the case of the solvated electron in H2O and NH3,” Can. J. Chem. 55, 1916–1919 (1977).
    [CrossRef]
  31. J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).
    [PubMed]
  32. P. Krebs, “Localization of excess electrons in dense polar vapors,” J. Phys. Chem. 88, 3702–3709 (1984).
    [CrossRef]
  33. A. Migus, Y. Gauduel, J. L. Martin, A. Antonetti, “Excess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetime,” Phys. Rev. Lett. 58, 1559–1562 (1987).
    [CrossRef] [PubMed]
  34. F. Williams, S. P. Varma, S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).
    [CrossRef]
  35. A. Penzkofer, “Parametrically generated spectra and optical breakdown in H2O and NaCl,” Opt. Commun. 11, 265–269 (1974).
    [CrossRef]
  36. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965) [Zh. Eksp. Teor. Fiz. 47, 1945–1957 (1964)].

1988 (2)

A. Vogel, W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
[CrossRef]

S. P. Dretler, “Laser lithotripsy: a review of 20 years of research and clinical applications,” Lasers Surg. Med. 8, 341–356 (1988).
[CrossRef] [PubMed]

1987 (1)

A. Migus, Y. Gauduel, J. L. Martin, A. Antonetti, “Excess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetime,” Phys. Rev. Lett. 58, 1559–1562 (1987).
[CrossRef] [PubMed]

1986 (3)

F. Docchio, L. Dossi, C. A. Sacchi, “Q-switched Nd:YAG laser irradiation of the eye and related phenomena: an experimental study. I: Optical breakdown determination for liquids and membranes,” Laser Life Sci. 1, 87–103 (1986).

F. Docchio, C. A. Sacchi, J. Marshall, “Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations,” Lasers Ophthalmol. 1, 83–93 (1986).

M. Zahn, Y. Ohki, D. B. Fenneman, R. J. Grisphover, V. H. Gehman, “Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design,” Proc. IEEE 74, 1182–1220 (1986).
[CrossRef]

1985 (1)

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).
[PubMed]

1984 (2)

P. Krebs, “Localization of excess electrons in dense polar vapors,” J. Phys. Chem. 88, 3702–3709 (1984).
[CrossRef]

C. A. Puliafito, R. F. Steinert, “Short pulsed Nd:YAG laser microsurgery of the eye: biophysical considerations,” IEEE J. Quantum Electron. QE-20, 1442–1448 (1984).
[CrossRef]

1983 (2)

M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser photodisruptors: damage mechanisms, instrument design and safety,” Ophthalmologica 90, 973–991 (1983).

B. K. Ridley “Lucky-drift mechanism for impact ionisation in semiconductors,” J. Phys. C 16, 3373–3388 (1983).
[CrossRef]

1981 (2)

Z. Cardeny, J. Tauc, “Hot-carrier thermalization in amorphous silicon,” Phys. Rev. Lett. 46, 1223–1226 (1981).
[CrossRef]

F. Fankhauser, P. Roussel, J. Steffen, E. Van der Zypen, A. Cherenkova, “Clinical studies on the efficiency of high power laser radiation upon some structure of the anterior segment of the human eye: first experiments of the treatment of some pathological conditions of the anterior segment of the eye by means of a Q-switched laser system,” Int. J. Ophthalmol. 3, 129–139 (1981).
[CrossRef]

1980 (1)

D. Aron-Rosa, J. J. Aron, J. Griesemann, R. Thyzel, “Use of the neodymium:YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant. Soc. 6, 352–354 (1980).
[PubMed]

1979 (1)

D. Grand, A. Bernas, E. Amouyal, “Photoionization of aqueous indole; conduction band edge and energy gap in liquid water,” Chem. Phys. 44, 73–79 (1979).
[CrossRef]

1977 (3)

E. Kálmán, G. Pálinkás, P. Kovács, “Liquid water. I: Electron scattering,” Mol. Phys. 34, 505–524 (1977).
[CrossRef]

G. Pálinkás, E. Kádlmán, P. Kovács, “Liquid water. II: Experimental atom pair-correlation functions of liquid D2O,” Mol. Phys. 34, 525–537 (1977).
[CrossRef]

G. Ascarelli, “Experimental detection of collective modes in a polar liquid: application to the case of the solvated electron in H2O and NH3,” Can. J. Chem. 55, 1916–1919 (1977).
[CrossRef]

1976 (1)

F. Williams, S. P. Varma, S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).
[CrossRef]

1974 (2)

A. Penzkofer, “Parametrically generated spectra and optical breakdown in H2O and NaCl,” Opt. Commun. 11, 265–269 (1974).
[CrossRef]

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

1973 (1)

1972 (1)

M. Bass, H. H. Barrett, “Avalanche breakdown and the probabilistic nature of laser-induced damage,” IEEE J. Quantum Electron. QE-8, 338–343 (1972).
[CrossRef]

1971 (2)

E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett. 19, 495–497 (1971).
[CrossRef]

A. H. Narten, H. A. Levy, “Liquid water: molecular correlation functions from x-ray diffraction,” J. Chem. Phys. 55, 2263–2269 (1971).
[CrossRef]

1969 (2)

C. De Michelis, “Laser induced gas breakdown: a bibliographical review,” IEEE J. Quantum Electron. QE-5, 188–202 (1969).
[CrossRef]

J. W. Boyle, J. A. Ghormley, C. J. Hochanadel, J. F. Riley, “Production of hydrated electrons by flash photolysis of liquid water with light in the first continuum,” J. Phys. Chem. 73, 2886–2890 (1969).
[CrossRef]

1968 (1)

P. A. Barnes, K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13, 282–284 (1968).
[CrossRef]

1966 (1)

Yu. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8, 650–654 (1966) [Usp. Fiz. Nauk 87, 29–36 (1965)].
[CrossRef]

1965 (2)

L. V. Keldysh, “Concerning the theory of impact ionization in semiconductors,” Sov. Phys. JETP 21, 1135–1144 (1965).

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965) [Zh. Eksp. Teor. Fiz. 47, 1945–1957 (1964)].

1962 (1)

G. A. Baraff, “Distribution functions and ionization rates for hot electrons in semiconductors,” Phys. Rev. 128, 2507–2517 (1962).
[CrossRef]

1961 (1)

W. Shockley, “Problems related to P-N junctions in silicon,” Czech. J. Phys. B 11, 81–86 (1961); Solid-State Electron. 2, 35–40 (1961).
[CrossRef]

1958 (1)

B. N. Brockhouse, “Structure dynamics of water by neutron spectrometry,” Nuovo Cimento Suppl. IX, 47–75 (1958).

1954 (1)

P. A. Wolff, “Theory of electron multiplication in silicon and germanium,” Phys. Rev. 95, 1415–1420 (1954).
[CrossRef]

1949 (1)

R. Seitz, “On the theory of electron multiplication in crystals,” Phys. Rev. 76, 1376–1393 (1949).
[CrossRef]

Amouyal, E.

D. Grand, A. Bernas, E. Amouyal, “Photoionization of aqueous indole; conduction band edge and energy gap in liquid water,” Chem. Phys. 44, 73–79 (1979).
[CrossRef]

Antonetti, A.

A. Migus, Y. Gauduel, J. L. Martin, A. Antonetti, “Excess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetime,” Phys. Rev. Lett. 58, 1559–1562 (1987).
[CrossRef] [PubMed]

Aron, J. J.

D. Aron-Rosa, J. J. Aron, J. Griesemann, R. Thyzel, “Use of the neodymium:YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant. Soc. 6, 352–354 (1980).
[PubMed]

Aron-Rosa, D.

D. Aron-Rosa, J. J. Aron, J. Griesemann, R. Thyzel, “Use of the neodymium:YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant. Soc. 6, 352–354 (1980).
[PubMed]

Ascarelli, G.

G. Ascarelli, “Experimental detection of collective modes in a polar liquid: application to the case of the solvated electron in H2O and NH3,” Can. J. Chem. 55, 1916–1919 (1977).
[CrossRef]

Baraff, G. A.

G. A. Baraff, “Distribution functions and ionization rates for hot electrons in semiconductors,” Phys. Rev. 128, 2507–2517 (1962).
[CrossRef]

Barnes, P. A.

P. A. Barnes, K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13, 282–284 (1968).
[CrossRef]

Barrett, H. H.

M. Bass, H. H. Barrett, “Avalanche breakdown and the probabilistic nature of laser-induced damage,” IEEE J. Quantum Electron. QE-8, 338–343 (1972).
[CrossRef]

Bass, M.

M. Bass, H. H. Barrett, “Avalanche breakdown and the probabilistic nature of laser-induced damage,” IEEE J. Quantum Electron. QE-8, 338–343 (1972).
[CrossRef]

Belcher, C. D.

M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser photodisruptors: damage mechanisms, instrument design and safety,” Ophthalmologica 90, 973–991 (1983).

Bernas, A.

D. Grand, A. Bernas, E. Amouyal, “Photoionization of aqueous indole; conduction band edge and energy gap in liquid water,” Chem. Phys. 44, 73–79 (1979).
[CrossRef]

Bloembergen, N.

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

Boyle, J. W.

J. W. Boyle, J. A. Ghormley, C. J. Hochanadel, J. F. Riley, “Production of hydrated electrons by flash photolysis of liquid water with light in the first continuum,” J. Phys. Chem. 73, 2886–2890 (1969).
[CrossRef]

Brockhouse, B. N.

B. N. Brockhouse, “Structure dynamics of water by neutron spectrometry,” Nuovo Cimento Suppl. IX, 47–75 (1958).

Buzney, S. M.

M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser photodisruptors: damage mechanisms, instrument design and safety,” Ophthalmologica 90, 973–991 (1983).

Cardeny, Z.

Z. Cardeny, J. Tauc, “Hot-carrier thermalization in amorphous silicon,” Phys. Rev. Lett. 46, 1223–1226 (1981).
[CrossRef]

Cherenkova, A.

F. Fankhauser, P. Roussel, J. Steffen, E. Van der Zypen, A. Cherenkova, “Clinical studies on the efficiency of high power laser radiation upon some structure of the anterior segment of the human eye: first experiments of the treatment of some pathological conditions of the anterior segment of the eye by means of a Q-switched laser system,” Int. J. Ophthalmol. 3, 129–139 (1981).
[CrossRef]

De Michelis, C.

C. De Michelis, “Laser induced gas breakdown: a bibliographical review,” IEEE J. Quantum Electron. QE-5, 188–202 (1969).
[CrossRef]

Docchio, F.

F. Docchio, L. Dossi, C. A. Sacchi, “Q-switched Nd:YAG laser irradiation of the eye and related phenomena: an experimental study. I: Optical breakdown determination for liquids and membranes,” Laser Life Sci. 1, 87–103 (1986).

F. Docchio, C. A. Sacchi, J. Marshall, “Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations,” Lasers Ophthalmol. 1, 83–93 (1986).

Dossi, L.

F. Docchio, L. Dossi, C. A. Sacchi, “Q-switched Nd:YAG laser irradiation of the eye and related phenomena: an experimental study. I: Optical breakdown determination for liquids and membranes,” Laser Life Sci. 1, 87–103 (1986).

Dretler, S. P.

S. P. Dretler, “Laser lithotripsy: a review of 20 years of research and clinical applications,” Lasers Surg. Med. 8, 341–356 (1988).
[CrossRef] [PubMed]

Fankhauser, F.

F. Fankhauser, P. Roussel, J. Steffen, E. Van der Zypen, A. Cherenkova, “Clinical studies on the efficiency of high power laser radiation upon some structure of the anterior segment of the human eye: first experiments of the treatment of some pathological conditions of the anterior segment of the eye by means of a Q-switched laser system,” Int. J. Ophthalmol. 3, 129–139 (1981).
[CrossRef]

Fenneman, D. B.

M. Zahn, Y. Ohki, D. B. Fenneman, R. J. Grisphover, V. H. Gehman, “Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design,” Proc. IEEE 74, 1182–1220 (1986).
[CrossRef]

Fujimoto, J. G.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).
[PubMed]

Gauduel, Y.

A. Migus, Y. Gauduel, J. L. Martin, A. Antonetti, “Excess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetime,” Phys. Rev. Lett. 58, 1559–1562 (1987).
[CrossRef] [PubMed]

Gehman, V. H.

M. Zahn, Y. Ohki, D. B. Fenneman, R. J. Grisphover, V. H. Gehman, “Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design,” Proc. IEEE 74, 1182–1220 (1986).
[CrossRef]

Ghormley, J. A.

J. W. Boyle, J. A. Ghormley, C. J. Hochanadel, J. F. Riley, “Production of hydrated electrons by flash photolysis of liquid water with light in the first continuum,” J. Phys. Chem. 73, 2886–2890 (1969).
[CrossRef]

Glass, A. J.

Grand, D.

D. Grand, A. Bernas, E. Amouyal, “Photoionization of aqueous indole; conduction band edge and energy gap in liquid water,” Chem. Phys. 44, 73–79 (1979).
[CrossRef]

Griesemann, J.

D. Aron-Rosa, J. J. Aron, J. Griesemann, R. Thyzel, “Use of the neodymium:YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant. Soc. 6, 352–354 (1980).
[PubMed]

Grisphover, R. J.

M. Zahn, Y. Ohki, D. B. Fenneman, R. J. Grisphover, V. H. Gehman, “Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design,” Proc. IEEE 74, 1182–1220 (1986).
[CrossRef]

Guenther, A. H.

Hillenius, S.

F. Williams, S. P. Varma, S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).
[CrossRef]

Hochanadel, C. J.

J. W. Boyle, J. A. Ghormley, C. J. Hochanadel, J. F. Riley, “Production of hydrated electrons by flash photolysis of liquid water with light in the first continuum,” J. Phys. Chem. 73, 2886–2890 (1969).
[CrossRef]

Ippen, E. P.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).
[PubMed]

Kádlmán, E.

G. Pálinkás, E. Kádlmán, P. Kovács, “Liquid water. II: Experimental atom pair-correlation functions of liquid D2O,” Mol. Phys. 34, 525–537 (1977).
[CrossRef]

Kálmán, E.

E. Kálmán, G. Pálinkás, P. Kovács, “Liquid water. I: Electron scattering,” Mol. Phys. 34, 505–524 (1977).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “Concerning the theory of impact ionization in semiconductors,” Sov. Phys. JETP 21, 1135–1144 (1965).

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965) [Zh. Eksp. Teor. Fiz. 47, 1945–1957 (1964)].

Kovács, P.

G. Pálinkás, E. Kádlmán, P. Kovács, “Liquid water. II: Experimental atom pair-correlation functions of liquid D2O,” Mol. Phys. 34, 525–537 (1977).
[CrossRef]

E. Kálmán, G. Pálinkás, P. Kovács, “Liquid water. I: Electron scattering,” Mol. Phys. 34, 505–524 (1977).
[CrossRef]

Krebs, P.

P. Krebs, “Localization of excess electrons in dense polar vapors,” J. Phys. Chem. 88, 3702–3709 (1984).
[CrossRef]

Lauterborn, W.

A. Vogel, W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
[CrossRef]

Levy, H. A.

A. H. Narten, H. A. Levy, “Liquid water: molecular correlation functions from x-ray diffraction,” J. Chem. Phys. 55, 2263–2269 (1971).
[CrossRef]

Lin, W. Z.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).
[PubMed]

Mainster, M. A.

M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser photodisruptors: damage mechanisms, instrument design and safety,” Ophthalmologica 90, 973–991 (1983).

Marshall, J.

F. Docchio, C. A. Sacchi, J. Marshall, “Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations,” Lasers Ophthalmol. 1, 83–93 (1986).

Martin, J. L.

A. Migus, Y. Gauduel, J. L. Martin, A. Antonetti, “Excess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetime,” Phys. Rev. Lett. 58, 1559–1562 (1987).
[CrossRef] [PubMed]

Migus, A.

A. Migus, Y. Gauduel, J. L. Martin, A. Antonetti, “Excess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetime,” Phys. Rev. Lett. 58, 1559–1562 (1987).
[CrossRef] [PubMed]

Narten, A. H.

A. H. Narten, H. A. Levy, “Liquid water: molecular correlation functions from x-ray diffraction,” J. Chem. Phys. 55, 2263–2269 (1971).
[CrossRef]

Ohki, Y.

M. Zahn, Y. Ohki, D. B. Fenneman, R. J. Grisphover, V. H. Gehman, “Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design,” Proc. IEEE 74, 1182–1220 (1986).
[CrossRef]

Pálinkás, G.

G. Pálinkás, E. Kádlmán, P. Kovács, “Liquid water. II: Experimental atom pair-correlation functions of liquid D2O,” Mol. Phys. 34, 525–537 (1977).
[CrossRef]

E. Kálmán, G. Pálinkás, P. Kovács, “Liquid water. I: Electron scattering,” Mol. Phys. 34, 505–524 (1977).
[CrossRef]

Penzkofer, A.

A. Penzkofer, “Parametrically generated spectra and optical breakdown in H2O and NaCl,” Opt. Commun. 11, 265–269 (1974).
[CrossRef]

Puliafito, C. A.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).
[PubMed]

C. A. Puliafito, R. F. Steinert, “Short pulsed Nd:YAG laser microsurgery of the eye: biophysical considerations,” IEEE J. Quantum Electron. QE-20, 1442–1448 (1984).
[CrossRef]

Raizer, Yu. P.

Yu. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8, 650–654 (1966) [Usp. Fiz. Nauk 87, 29–36 (1965)].
[CrossRef]

Ridley, B. K.

B. K. Ridley “Lucky-drift mechanism for impact ionisation in semiconductors,” J. Phys. C 16, 3373–3388 (1983).
[CrossRef]

Rieckhoff, K. E.

P. A. Barnes, K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13, 282–284 (1968).
[CrossRef]

Riley, J. F.

J. W. Boyle, J. A. Ghormley, C. J. Hochanadel, J. F. Riley, “Production of hydrated electrons by flash photolysis of liquid water with light in the first continuum,” J. Phys. Chem. 73, 2886–2890 (1969).
[CrossRef]

Roussel, P.

F. Fankhauser, P. Roussel, J. Steffen, E. Van der Zypen, A. Cherenkova, “Clinical studies on the efficiency of high power laser radiation upon some structure of the anterior segment of the human eye: first experiments of the treatment of some pathological conditions of the anterior segment of the eye by means of a Q-switched laser system,” Int. J. Ophthalmol. 3, 129–139 (1981).
[CrossRef]

Sacchi, C. A.

F. Docchio, L. Dossi, C. A. Sacchi, “Q-switched Nd:YAG laser irradiation of the eye and related phenomena: an experimental study. I: Optical breakdown determination for liquids and membranes,” Laser Life Sci. 1, 87–103 (1986).

F. Docchio, C. A. Sacchi, J. Marshall, “Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations,” Lasers Ophthalmol. 1, 83–93 (1986).

Seitz, R.

R. Seitz, “On the theory of electron multiplication in crystals,” Phys. Rev. 76, 1376–1393 (1949).
[CrossRef]

Shockley, W.

W. Shockley, “Problems related to P-N junctions in silicon,” Czech. J. Phys. B 11, 81–86 (1961); Solid-State Electron. 2, 35–40 (1961).
[CrossRef]

Sliney, D. H.

M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser photodisruptors: damage mechanisms, instrument design and safety,” Ophthalmologica 90, 973–991 (1983).

Steffen, J.

F. Fankhauser, P. Roussel, J. Steffen, E. Van der Zypen, A. Cherenkova, “Clinical studies on the efficiency of high power laser radiation upon some structure of the anterior segment of the human eye: first experiments of the treatment of some pathological conditions of the anterior segment of the eye by means of a Q-switched laser system,” Int. J. Ophthalmol. 3, 129–139 (1981).
[CrossRef]

Steinert, R. F.

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).
[PubMed]

C. A. Puliafito, R. F. Steinert, “Short pulsed Nd:YAG laser microsurgery of the eye: biophysical considerations,” IEEE J. Quantum Electron. QE-20, 1442–1448 (1984).
[CrossRef]

Tauc, J.

Z. Cardeny, J. Tauc, “Hot-carrier thermalization in amorphous silicon,” Phys. Rev. Lett. 46, 1223–1226 (1981).
[CrossRef]

Thyzel, R.

D. Aron-Rosa, J. J. Aron, J. Griesemann, R. Thyzel, “Use of the neodymium:YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant. Soc. 6, 352–354 (1980).
[PubMed]

Van der Zypen, E.

F. Fankhauser, P. Roussel, J. Steffen, E. Van der Zypen, A. Cherenkova, “Clinical studies on the efficiency of high power laser radiation upon some structure of the anterior segment of the human eye: first experiments of the treatment of some pathological conditions of the anterior segment of the eye by means of a Q-switched laser system,” Int. J. Ophthalmol. 3, 129–139 (1981).
[CrossRef]

Varma, S. P.

F. Williams, S. P. Varma, S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).
[CrossRef]

Vogel, A.

A. Vogel, W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
[CrossRef]

Williams, F.

F. Williams, S. P. Varma, S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).
[CrossRef]

Wolff, P. A.

P. A. Wolff, “Theory of electron multiplication in silicon and germanium,” Phys. Rev. 95, 1415–1420 (1954).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett. 19, 495–497 (1971).
[CrossRef]

Zahn, M.

M. Zahn, Y. Ohki, D. B. Fenneman, R. J. Grisphover, V. H. Gehman, “Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design,” Proc. IEEE 74, 1182–1220 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. A. Barnes, K. E. Rieckhoff, “Laser-induced underwater sparks,” Appl. Phys. Lett. 13, 282–284 (1968).
[CrossRef]

E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett. 19, 495–497 (1971).
[CrossRef]

Can. J. Chem. (1)

G. Ascarelli, “Experimental detection of collective modes in a polar liquid: application to the case of the solvated electron in H2O and NH3,” Can. J. Chem. 55, 1916–1919 (1977).
[CrossRef]

Chem. Phys. (1)

D. Grand, A. Bernas, E. Amouyal, “Photoionization of aqueous indole; conduction band edge and energy gap in liquid water,” Chem. Phys. 44, 73–79 (1979).
[CrossRef]

Czech. J. Phys. B (1)

W. Shockley, “Problems related to P-N junctions in silicon,” Czech. J. Phys. B 11, 81–86 (1961); Solid-State Electron. 2, 35–40 (1961).
[CrossRef]

IEEE J. Quantum Electron. (4)

M. Bass, H. H. Barrett, “Avalanche breakdown and the probabilistic nature of laser-induced damage,” IEEE J. Quantum Electron. QE-8, 338–343 (1972).
[CrossRef]

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. QE-10, 375–386 (1974).
[CrossRef]

C. A. Puliafito, R. F. Steinert, “Short pulsed Nd:YAG laser microsurgery of the eye: biophysical considerations,” IEEE J. Quantum Electron. QE-20, 1442–1448 (1984).
[CrossRef]

C. De Michelis, “Laser induced gas breakdown: a bibliographical review,” IEEE J. Quantum Electron. QE-5, 188–202 (1969).
[CrossRef]

Int. J. Ophthalmol. (1)

F. Fankhauser, P. Roussel, J. Steffen, E. Van der Zypen, A. Cherenkova, “Clinical studies on the efficiency of high power laser radiation upon some structure of the anterior segment of the human eye: first experiments of the treatment of some pathological conditions of the anterior segment of the eye by means of a Q-switched laser system,” Int. J. Ophthalmol. 3, 129–139 (1981).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

J. G. Fujimoto, W. Z. Lin, E. P. Ippen, C. A. Puliafito, R. F. Steinert, “Time-resolved studies of Nd:YAG laser-induced breakdown: plasma formation, acoustic wave generation, and cavitation,” Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985).
[PubMed]

J. Acoust. Soc. Am. (1)

A. Vogel, W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988).
[CrossRef]

J. Am. Intraocul. Implant. Soc. (1)

D. Aron-Rosa, J. J. Aron, J. Griesemann, R. Thyzel, “Use of the neodymium:YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocul. Implant. Soc. 6, 352–354 (1980).
[PubMed]

J. Chem. Phys. (2)

A. H. Narten, H. A. Levy, “Liquid water: molecular correlation functions from x-ray diffraction,” J. Chem. Phys. 55, 2263–2269 (1971).
[CrossRef]

F. Williams, S. P. Varma, S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).
[CrossRef]

J. Phys. C (1)

B. K. Ridley “Lucky-drift mechanism for impact ionisation in semiconductors,” J. Phys. C 16, 3373–3388 (1983).
[CrossRef]

J. Phys. Chem. (2)

J. W. Boyle, J. A. Ghormley, C. J. Hochanadel, J. F. Riley, “Production of hydrated electrons by flash photolysis of liquid water with light in the first continuum,” J. Phys. Chem. 73, 2886–2890 (1969).
[CrossRef]

P. Krebs, “Localization of excess electrons in dense polar vapors,” J. Phys. Chem. 88, 3702–3709 (1984).
[CrossRef]

Laser Life Sci. (1)

F. Docchio, L. Dossi, C. A. Sacchi, “Q-switched Nd:YAG laser irradiation of the eye and related phenomena: an experimental study. I: Optical breakdown determination for liquids and membranes,” Laser Life Sci. 1, 87–103 (1986).

Lasers Ophthalmol. (1)

F. Docchio, C. A. Sacchi, J. Marshall, “Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations,” Lasers Ophthalmol. 1, 83–93 (1986).

Lasers Surg. Med. (1)

S. P. Dretler, “Laser lithotripsy: a review of 20 years of research and clinical applications,” Lasers Surg. Med. 8, 341–356 (1988).
[CrossRef] [PubMed]

Mol. Phys. (2)

E. Kálmán, G. Pálinkás, P. Kovács, “Liquid water. I: Electron scattering,” Mol. Phys. 34, 505–524 (1977).
[CrossRef]

G. Pálinkás, E. Kádlmán, P. Kovács, “Liquid water. II: Experimental atom pair-correlation functions of liquid D2O,” Mol. Phys. 34, 525–537 (1977).
[CrossRef]

Nuovo Cimento Suppl. (1)

B. N. Brockhouse, “Structure dynamics of water by neutron spectrometry,” Nuovo Cimento Suppl. IX, 47–75 (1958).

Ophthalmologica (1)

M. A. Mainster, D. H. Sliney, C. D. Belcher, S. M. Buzney, “Laser photodisruptors: damage mechanisms, instrument design and safety,” Ophthalmologica 90, 973–991 (1983).

Opt. Commun. (1)

A. Penzkofer, “Parametrically generated spectra and optical breakdown in H2O and NaCl,” Opt. Commun. 11, 265–269 (1974).
[CrossRef]

Phys. Rev. (3)

R. Seitz, “On the theory of electron multiplication in crystals,” Phys. Rev. 76, 1376–1393 (1949).
[CrossRef]

P. A. Wolff, “Theory of electron multiplication in silicon and germanium,” Phys. Rev. 95, 1415–1420 (1954).
[CrossRef]

G. A. Baraff, “Distribution functions and ionization rates for hot electrons in semiconductors,” Phys. Rev. 128, 2507–2517 (1962).
[CrossRef]

Phys. Rev. Lett. (2)

Z. Cardeny, J. Tauc, “Hot-carrier thermalization in amorphous silicon,” Phys. Rev. Lett. 46, 1223–1226 (1981).
[CrossRef]

A. Migus, Y. Gauduel, J. L. Martin, A. Antonetti, “Excess electrons in liquid water: first evidence of a prehydrated state with femtosecond lifetime,” Phys. Rev. Lett. 58, 1559–1562 (1987).
[CrossRef] [PubMed]

Proc. IEEE (1)

M. Zahn, Y. Ohki, D. B. Fenneman, R. J. Grisphover, V. H. Gehman, “Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design,” Proc. IEEE 74, 1182–1220 (1986).
[CrossRef]

Sov. Phys. JETP (2)

L. V. Keldysh, “Concerning the theory of impact ionization in semiconductors,” Sov. Phys. JETP 21, 1135–1144 (1965).

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965) [Zh. Eksp. Teor. Fiz. 47, 1945–1957 (1964)].

Sov. Phys. Usp. (1)

Yu. P. Raizer, “Breakdown and heating of gases under the influence of a laser beam,” Sov. Phys. Usp. 8, 650–654 (1966) [Usp. Fiz. Nauk 87, 29–36 (1965)].
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Breakdown curves expressed as the logarithm of breakdown probability versus the inverse of the laser electric field. The spot size (1/e of the peak irradiance) was d = 350 μm; the pulse duration was tL = 7 nsec. DW distilled water; S, saline solution; CV, calf vitreous; Tap W, tap water; M,S, thin (10-μm) plastic membrane in saline solution.

Fig. 2
Fig. 2

Breakdown curves, expressed as the logarithm of breakdown probability versus the inverse of the laser electric field. The spot size (1/e of the peak irradiance) was d = 15 μm; the pulse duration was tL = 12 nsec. DW, distilled water; Tap W, tap water.

Fig. 3
Fig. 3

Breakdown curves, expressed as the logarithm of breakdown probability versus the inverse of the laser electric field, for distilled water and different pulse durations. The spot size (1/e of the peak iraradiance) was d = 50 μm. Pulse duration: △, 30 psec; ▽, 220 psec; ●, 7 nsec.

Fig. 4
Fig. 4

Breakdown threshold irradiance versus the laser-pulse duration for several media. The spot size (1/e of the peak irradiance) was d = 75 μm. DW, distilled water; S, saline solution; CV calf vitreous; Tap W, tap water.

Fig. 5
Fig. 5

Electron drift mobility μ in dense NH3 vapor versus number density n of the vapor for two temperatures (T1, T2), This drawing is derived from the data of Krebs (Ref. 32, Fig. 1). Similar behavior is believed to hold for water vapor. nc critical density.

Tables (3)

Tables Icon

Table 1 Evaluation of Some Physical Parameters Considered in the Text for the Materials Listeda

Tables Icon

Table 2 Evaluation of Some Physical Parameters Considered in the Text for the Materials Listeda

Tables Icon

Table 3 Threshold Irradiance for Breakdown in Distilled Water with Laser Pulses of Different Durations

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d ɛ / d t = e E v = e E ( 2 ɛ / m ) 1 / 2 .
P 1 ( t ) = exp ( - 0 t p d t ) = exp ( - ɛ 1 ɛ 2 p d ɛ d ɛ / d t ) ,
P 1 = exp [ - 2 3 ɛ 2 p ( ɛ 2 ) e E v ( ɛ 2 ) ] ,
P 1 = exp ( - ψ ɛ i e E ¯ l 2 ) ,
d ɛ / d t = ( e 2 / m ) E 2 τ m .
P 2 = exp ( - 0 t d t τ ɛ ) = exp ( - 0 ɛ i m d ɛ e 2 E 2 τ m τ ɛ ) .
P 2 = exp ( - ɛ i e E ¯ l 2 ω e E ¯ l 2 ) ,
n t ¯ = n 1 / 2 t 1 .
n λ e = 2 d ,
P ( E ¯ ) = N ( τ L / τ coll ) f M exp ( - ɛ i / e E ¯ l ) ,

Metrics