Abstract

Temporally and spatially resolved plasma emission and stimulated Raman-scattering profiles of water droplets are simultaneously recorded at two selectable wavelengths corresponding to the emission of the resonant and nonresonant sodium, the plasma continuum, the Balmer hydrogen, and the stimulated Raman scattering of water. The propagation speed of the breakout plasma from the droplet shadow face (in the form of a packet) and from the illuminated face is determined. The relative heating of the atoms in the plasma is extracted from the differences between the emission profiles of sodium and hydrogen, which have different electronic energy levels. The plasma response to the multipulse structure of the input laser radiation provides information on plasma shedding and heating for the subsequent pulses and an additional check of the validity of the one-dimensional electrohydrodynamic model, which includes a multipulse input.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Benincasa, P. W. Barber, J. -Z. Zhang, W.-F. Hsieh, R. K. Chang, Appl. Opt. 26, 1348 (1987).
    [CrossRef] [PubMed]
  2. J. H. Eickmans, W.-F. Hsieh, R. K. Chang, Opt. Lett. 12, 22 (1987).
    [CrossRef] [PubMed]
  3. W.-F. Hsieh, J. H. Eickmans, R. K. Chang, J. Opt. Soc. Am. B 4, 1816 (1987).
    [CrossRef]
  4. J. H. Eickmans, W.-F. Hsieh, R. K. Chang, Appl. Opt. 26, 3721 (1987).
    [CrossRef] [PubMed]
  5. W.-F. Hsieh, J. -B. Zheng, C. F. Wood, B. T. Chu, R. K. Chang, Opt. Lett. 12, 576 (1987).
    [CrossRef] [PubMed]
  6. J. C. Carls, J. R. Brock, Opt. Lett. 13, 273 (1988).
    [CrossRef] [PubMed]
  7. J. C. Carls, Y. Seo, J. R. Brock, J. Opt. Soc. Am. B 8, 329 (1991).
    [CrossRef]
  8. J. -B. Zheng, W.-F. Hsieh, S. -C. Chen, R. K. Chang, Opt. Lett. 13, 559 (1988).
    [CrossRef]
  9. R. K. Chang, J. H. Eickmans, W.-F. Hsieh, C. F. Wood, J. -Z. Zhang, J. -B. Zheng, Appl. Opt. 27, 2377 (1988).
    [CrossRef] [PubMed]
  10. P. Chylek, M. A. Jarzembski, N. Y. Chou, P. G. Pinnick, Appl. Phys. Lett. 49, 1475 (1986).
    [CrossRef]
  11. S. -X. Qian, J. B. Snow, H. -M. Tzeng, R. K. Chang, Science 231, 486 (1986).
    [CrossRef] [PubMed]
  12. R. G. Pinnick, P. Chylek, M. Jarzembski, E. Creegan, V. Srivastava, G. Fernandez, J. D. Pendleton, A. Biswas, Appl. Opt. 27, 987 (1988).
    [CrossRef] [PubMed]
  13. P. Chylek, M. A. Jarzembski, V. Srivastava, R. G. Pinnick, J. D. Pendleton, J. P. Cruncleton, Appl. Opt. 26, 760 (1987).
    [CrossRef]
  14. J. -Z. Zhang, J. K. Lam, C. F. Wood, B. T. Chu, R. K. Chang, Appl. Opt. 26, 4731 (1987).
    [CrossRef] [PubMed]
  15. A. Biswas, H. Latifi, P. Shah, L. J. Radziemski, R. L. Armstrong, Opt. Lett. 12, 313 (1987).
    [CrossRef] [PubMed]
  16. W. Lochte-Holtgreven, in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (North-Holland, Amsterdam, 1968), p. 135.
  17. R. L. Armstrong, Appl. Opt. 23, 156 (1984); J. Appl. Phys. 56, 2142 (1984).
    [CrossRef]
  18. R. L. Armstrong, P. J. O’Rourke, A. Zardecki, Phys. Fluids 29, 3573 (1986).
    [CrossRef]
  19. R. L. Armstrong, A. Zardecki, J. Appl. Phys. 62, 4571 (1987).
    [CrossRef]
  20. S. M. Chitanvis, Appl. Opt. 25, 1837 (1986); J. Appl. Phys. 62, 4387 (1988).
    [CrossRef]
  21. J. C. Carls, J. R. Brock, Aerosol Sci. Technol. 7, 701 (1987).
  22. J. B. Snow, S. -X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
    [CrossRef] [PubMed]
  23. W.-F. Hsieh, J. -B. Zheng, R. K. Chang, Opt. Lett. 13, 497 (1988).
    [CrossRef] [PubMed]
  24. A. Biswas, P. Chylek, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, M. Jarzembski, G. Fernandez, Opt. Lett. 13, 494 (1988).
    [CrossRef]
  25. W.-F. Hsieh, J. -B. Zheng, R. K. Chang, Opt. Lett. 14, 1014 (1989).
    [CrossRef] [PubMed]

1991 (1)

1989 (1)

1988 (6)

1987 (10)

1986 (4)

P. Chylek, M. A. Jarzembski, N. Y. Chou, P. G. Pinnick, Appl. Phys. Lett. 49, 1475 (1986).
[CrossRef]

S. -X. Qian, J. B. Snow, H. -M. Tzeng, R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

S. M. Chitanvis, Appl. Opt. 25, 1837 (1986); J. Appl. Phys. 62, 4387 (1988).
[CrossRef]

R. L. Armstrong, P. J. O’Rourke, A. Zardecki, Phys. Fluids 29, 3573 (1986).
[CrossRef]

1985 (1)

1984 (1)

Armstrong, R. L.

Barber, P. W.

Benincasa, D. S.

Biswas, A.

Brock, J. R.

Carls, J. C.

Chang, R. K.

Chen, S. -C.

Chitanvis, S. M.

Chou, N. Y.

P. Chylek, M. A. Jarzembski, N. Y. Chou, P. G. Pinnick, Appl. Phys. Lett. 49, 1475 (1986).
[CrossRef]

Chu, B. T.

Chylek, P.

Creegan, E.

Cruncleton, J. P.

Eickmans, J. H.

Fernandez, G.

Hsieh, W.-F.

Jarzembski, M.

Jarzembski, M. A.

Lam, J. K.

Latifi, H.

Lochte-Holtgreven, W.

W. Lochte-Holtgreven, in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (North-Holland, Amsterdam, 1968), p. 135.

O’Rourke, P. J.

R. L. Armstrong, P. J. O’Rourke, A. Zardecki, Phys. Fluids 29, 3573 (1986).
[CrossRef]

Pendleton, J. D.

Pinnick, P. G.

P. Chylek, M. A. Jarzembski, N. Y. Chou, P. G. Pinnick, Appl. Phys. Lett. 49, 1475 (1986).
[CrossRef]

Pinnick, R. G.

Qian, S. -X.

S. -X. Qian, J. B. Snow, H. -M. Tzeng, R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

J. B. Snow, S. -X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

Radziemski, L. J.

Seo, Y.

Shah, P.

Snow, J. B.

S. -X. Qian, J. B. Snow, H. -M. Tzeng, R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

J. B. Snow, S. -X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

Srivastava, V.

Tzeng, H. -M.

S. -X. Qian, J. B. Snow, H. -M. Tzeng, R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

Wood, C. F.

Zardecki, A.

R. L. Armstrong, A. Zardecki, J. Appl. Phys. 62, 4571 (1987).
[CrossRef]

R. L. Armstrong, P. J. O’Rourke, A. Zardecki, Phys. Fluids 29, 3573 (1986).
[CrossRef]

Zhang, J. -Z.

Zheng, J. -B.

Aerosol Sci. Technol. (1)

J. C. Carls, J. R. Brock, Aerosol Sci. Technol. 7, 701 (1987).

Appl. Opt. (8)

Appl. Phys. Lett. (1)

P. Chylek, M. A. Jarzembski, N. Y. Chou, P. G. Pinnick, Appl. Phys. Lett. 49, 1475 (1986).
[CrossRef]

J. Appl. Phys. (1)

R. L. Armstrong, A. Zardecki, J. Appl. Phys. 62, 4571 (1987).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (9)

Phys. Fluids (1)

R. L. Armstrong, P. J. O’Rourke, A. Zardecki, Phys. Fluids 29, 3573 (1986).
[CrossRef]

Science (1)

S. -X. Qian, J. B. Snow, H. -M. Tzeng, R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

Other (1)

W. Lochte-Holtgreven, in Plasma Diagnostics, W. Lochte-Holtgreven, ed. (North-Holland, Amsterdam, 1968), p. 135.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental arrangement used to record the temporal and spatial profiles of the LIB-generated plasma emission Iλ1(z, t) and Iλ2(z, t) at two selectable wavelengths λ1 and λ2 along the z axis, which is parallel to the incident laser beam. The y and z axes are rotated 90° by a dove prism (not shown). Two fiber ribbons preserve the spatial image formed at the spectrograph slit and channel this image to the top and the bottom of the streak camera slit. A single fiber channels a part of the input laser pulse Iλ0(t) onto the center of the streak camera slit.

Fig. 2
Fig. 2

(a) Streak camera output of Iλ1(z, t), Iλ2(z, t), and Iλ0(t) with λ1 set at the nonresonant Na line (569 nm) and λ2 set at the resonant Na line (589 nm). (b) Isointensity contours of 15% of the maximum intensity in (a). Slopes V1 and V4 correspond to the propagation speed of the breakout plasma from the droplet’s shadow face and illuminated face, respectively. (c) Rotated streak camera output of Iλ1(z, t), Iλ2(z, t), and Iλ0(t). The streak camera sweep speed is 5 nsec/mm, Iλ0(t) = 1.6 GW/cm2, and the water droplet (a ≈ 40 μm) contains 4 M NaCl.

Fig. 3
Fig. 3

(a) Iλ1(z, t), Iλ2(z, t), and Iλ0(t) with λ1 set at the resonant Na line (589 nm) and λ2 set within the plasma continuum (611 nm). (b) Rotated streak camera output of the same data shown in (a). The streak camera sweep speed is 2 nsec/mm and Iλ0(t) = 1.8 GW/cm2.

Fig. 4
Fig. 4

Same as Fig. 3, except that λ2 is set at 656 nm for the Balmer Hα emission and the SRS associated with the O–H stretching mode of water (centered at 651 nm).

Fig. 5
Fig. 5

Intensity dependence of Iλ1(z, t) and Iλ2(z, t) with λ1 set at the resonant Na line (589 nm) and λ2 set at 656 nm for the Balmer Hα emission and the SRS of water. (a), (b), (c), and (d) correspond to Iλ0(t) = 0.4, 1.8, 6, and 9.5 GW/cm2, respectively. The intensity scale of (a) is 3× that of (b)–(d).

Fig. 6
Fig. 6

Spatially averaged but temporally resolved results obtained by digital integration (along the z axis) of the Iλ1(z, t) and Iλ2(z, t) data shown in Fig. 5. 〈Iλ1(z, t)〉z and 〈Iλ1(z, t)〉z are analogous to the output of two fast-response photomultipliers. (a), (b), (c), and (d) correspond to Iλ0(t) = 0.4, 1.8, 6, and 9.5 GW/cm2, respectively. The intensity scale of (a) is 3× that of (b)–(d).

Metrics