Abstract

Planar waveguides were made from a linear epoxy copolymer of bisphenol-A diglycidyl ether and amino-nitro-tolane. The refractive indices, nTM and nTE, and the electro-optic coefficients, r33 and r13, of the poled nonlinear-optical polymer films were determined by measurements of the waveguide modes of these films at a wavelength of 632.8 nm, and the results are reported for both electrode and corona poling. The ratio of the second-order susceptibilities was found to exceed significantly the theoretically expected value of 3. The restricted motion of the nonlinear chromophores during poling provides a possible explanation of this discrepancy. Introducing a restriction parameter ν (0 ≤ ν ≤ 1), we develop a simple model that can account for electro-optic coefficient ratios ranging from 3 to 6.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. D. Singer, S. L. Lalama, J. E. Sohn, and R. D. Small, “Electro-optic organic materials,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987), Vol. 1, pp. 435–468.
  2. M. Eich, G. C. Bjorklund, and D. Y. Yoon, “Poled amorphous polymers for second-order nonlinear optics,” Polym. Adv. Technol. 1, 189–198 (1990).
    [Crossref]
  3. J. D. Swalen, G. C. Bjorklund, W. Fleming, S. Herminghaus, D. Jungbauer, M. C. Jurich, W. E. Moerner, B. Reck, B. A. Smith, R. J. Twieg, C. G. Willson, and R. Zentel, “Poled epoxy polymers for optoelectronics,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 433–445.
  4. Although these films are often slightly anisotropic because of the spin-casting process, there is no preferred orientation of the NLO moieties.
  5. M. Eich, B. Reck, D. Y. Yoon, C. G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking induced vitrification under electric field,” J. Appl. Phys. 66, 3241–3247 (1989).
    [Crossref]
  6. D. Jungbauer, I. Teraoka, D. Y. Yoon, B. Reck, J. D. Swalen, R. J. Twieg, and C. G. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
    [Crossref]
  7. Because of the high refractive index of the polymer, the surface plasmon resonance of the gold film could not be observed in our experiment.
  8. J. D. Swalen, “Optical properties of Langmuir–Blodgett films,” J. Mol. Electron. 2, 155–181(1986).
  9. G. Zhang and K. Sasaki, “Measuring anisotropic refractive indices and film thicknesses of thin organic crystals using the prism coupling method,” Appl. Opt. 27, 1358–1362 (1988).
    [Crossref] [PubMed]
  10. R. Reinisch, P. Vincent, M. Neviere, and E. Pic, “Fast Pockels light modulator using guided wave resonance,” Appl. Opt. 24, 2001–2004 (1985).
    [Crossref] [PubMed]
  11. V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of ferroelectric polymers studied by attenuated total reflectance,” Opt. Commun. 69, 379–383 (1989).
    [Crossref]
  12. M. Dumont, Y. Levy, and D. Morichere, “Electrooptic organic waveguides: optical characterization,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 461–480.
  13. S. Ducharme, J. Feinberg, and R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. QE-23, 2116–2120 (1987).
    [Crossref]
  14. J. Schildkraut, “Determination of the electrooptic coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2841 (1990).
    [Crossref] [PubMed]
  15. R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Willson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
    [Crossref]
  16. H. A. Kurz, J. J. P. Stewart, and K. M. Dieter, “Calculation of the nonlinear optical properties of Molecules,” J. Computat. Chem. 11, 82–87 (1990).
    [Crossref]
  17. P. Robin, P. LeBarng, D. Broussoux, J. P. Pockolle, and V. Lemoine, “Optoelectronic devices with nonlinear optical polymers,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 481–488.
  18. H. F. Mark, N. G. Gaylord, and N. M. Bikales, eds., Encyclopedia of Polymer Science and Technology (Wiley, New York, 1967), Vol. 6, p. 221.

1991 (1)

D. Jungbauer, I. Teraoka, D. Y. Yoon, B. Reck, J. D. Swalen, R. J. Twieg, and C. G. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[Crossref]

1990 (4)

M. Eich, G. C. Bjorklund, and D. Y. Yoon, “Poled amorphous polymers for second-order nonlinear optics,” Polym. Adv. Technol. 1, 189–198 (1990).
[Crossref]

J. Schildkraut, “Determination of the electrooptic coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2841 (1990).
[Crossref] [PubMed]

R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Willson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
[Crossref]

H. A. Kurz, J. J. P. Stewart, and K. M. Dieter, “Calculation of the nonlinear optical properties of Molecules,” J. Computat. Chem. 11, 82–87 (1990).
[Crossref]

1989 (2)

M. Eich, B. Reck, D. Y. Yoon, C. G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking induced vitrification under electric field,” J. Appl. Phys. 66, 3241–3247 (1989).
[Crossref]

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of ferroelectric polymers studied by attenuated total reflectance,” Opt. Commun. 69, 379–383 (1989).
[Crossref]

1988 (1)

1987 (1)

S. Ducharme, J. Feinberg, and R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. QE-23, 2116–2120 (1987).
[Crossref]

1986 (1)

J. D. Swalen, “Optical properties of Langmuir–Blodgett films,” J. Mol. Electron. 2, 155–181(1986).

1985 (1)

Bjorklund, G. C.

R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Willson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
[Crossref]

M. Eich, G. C. Bjorklund, and D. Y. Yoon, “Poled amorphous polymers for second-order nonlinear optics,” Polym. Adv. Technol. 1, 189–198 (1990).
[Crossref]

M. Eich, B. Reck, D. Y. Yoon, C. G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking induced vitrification under electric field,” J. Appl. Phys. 66, 3241–3247 (1989).
[Crossref]

J. D. Swalen, G. C. Bjorklund, W. Fleming, S. Herminghaus, D. Jungbauer, M. C. Jurich, W. E. Moerner, B. Reck, B. A. Smith, R. J. Twieg, C. G. Willson, and R. Zentel, “Poled epoxy polymers for optoelectronics,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 433–445.

Broussoux, D.

P. Robin, P. LeBarng, D. Broussoux, J. P. Pockolle, and V. Lemoine, “Optoelectronic devices with nonlinear optical polymers,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 481–488.

Chastaing, E.

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of ferroelectric polymers studied by attenuated total reflectance,” Opt. Commun. 69, 379–383 (1989).
[Crossref]

Dentan, V.

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of ferroelectric polymers studied by attenuated total reflectance,” Opt. Commun. 69, 379–383 (1989).
[Crossref]

Dieter, K. M.

H. A. Kurz, J. J. P. Stewart, and K. M. Dieter, “Calculation of the nonlinear optical properties of Molecules,” J. Computat. Chem. 11, 82–87 (1990).
[Crossref]

Ducharme, S.

S. Ducharme, J. Feinberg, and R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. QE-23, 2116–2120 (1987).
[Crossref]

Dumont, M.

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of ferroelectric polymers studied by attenuated total reflectance,” Opt. Commun. 69, 379–383 (1989).
[Crossref]

M. Dumont, Y. Levy, and D. Morichere, “Electrooptic organic waveguides: optical characterization,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 461–480.

Eich, M.

M. Eich, G. C. Bjorklund, and D. Y. Yoon, “Poled amorphous polymers for second-order nonlinear optics,” Polym. Adv. Technol. 1, 189–198 (1990).
[Crossref]

M. Eich, B. Reck, D. Y. Yoon, C. G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking induced vitrification under electric field,” J. Appl. Phys. 66, 3241–3247 (1989).
[Crossref]

Feinberg, J.

S. Ducharme, J. Feinberg, and R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. QE-23, 2116–2120 (1987).
[Crossref]

Fleming, W.

J. D. Swalen, G. C. Bjorklund, W. Fleming, S. Herminghaus, D. Jungbauer, M. C. Jurich, W. E. Moerner, B. Reck, B. A. Smith, R. J. Twieg, C. G. Willson, and R. Zentel, “Poled epoxy polymers for optoelectronics,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 433–445.

Herminghaus, S.

J. D. Swalen, G. C. Bjorklund, W. Fleming, S. Herminghaus, D. Jungbauer, M. C. Jurich, W. E. Moerner, B. Reck, B. A. Smith, R. J. Twieg, C. G. Willson, and R. Zentel, “Poled epoxy polymers for optoelectronics,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 433–445.

Jungbauer, D.

D. Jungbauer, I. Teraoka, D. Y. Yoon, B. Reck, J. D. Swalen, R. J. Twieg, and C. G. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[Crossref]

J. D. Swalen, G. C. Bjorklund, W. Fleming, S. Herminghaus, D. Jungbauer, M. C. Jurich, W. E. Moerner, B. Reck, B. A. Smith, R. J. Twieg, C. G. Willson, and R. Zentel, “Poled epoxy polymers for optoelectronics,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 433–445.

Jurich, M. C.

R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Willson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
[Crossref]

J. D. Swalen, G. C. Bjorklund, W. Fleming, S. Herminghaus, D. Jungbauer, M. C. Jurich, W. E. Moerner, B. Reck, B. A. Smith, R. J. Twieg, C. G. Willson, and R. Zentel, “Poled epoxy polymers for optoelectronics,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 433–445.

Kurz, H. A.

H. A. Kurz, J. J. P. Stewart, and K. M. Dieter, “Calculation of the nonlinear optical properties of Molecules,” J. Computat. Chem. 11, 82–87 (1990).
[Crossref]

Lalama, S. L.

K. D. Singer, S. L. Lalama, J. E. Sohn, and R. D. Small, “Electro-optic organic materials,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987), Vol. 1, pp. 435–468.

LeBarng, P.

P. Robin, P. LeBarng, D. Broussoux, J. P. Pockolle, and V. Lemoine, “Optoelectronic devices with nonlinear optical polymers,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 481–488.

Lemoine, V.

P. Robin, P. LeBarng, D. Broussoux, J. P. Pockolle, and V. Lemoine, “Optoelectronic devices with nonlinear optical polymers,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 481–488.

Levy, Y.

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of ferroelectric polymers studied by attenuated total reflectance,” Opt. Commun. 69, 379–383 (1989).
[Crossref]

M. Dumont, Y. Levy, and D. Morichere, “Electrooptic organic waveguides: optical characterization,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 461–480.

Moerner, W. E.

J. D. Swalen, G. C. Bjorklund, W. Fleming, S. Herminghaus, D. Jungbauer, M. C. Jurich, W. E. Moerner, B. Reck, B. A. Smith, R. J. Twieg, C. G. Willson, and R. Zentel, “Poled epoxy polymers for optoelectronics,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 433–445.

Morichere, D.

M. Dumont, Y. Levy, and D. Morichere, “Electrooptic organic waveguides: optical characterization,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 461–480.

Neurgaonkar, R.

S. Ducharme, J. Feinberg, and R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. QE-23, 2116–2120 (1987).
[Crossref]

Neviere, M.

Page, R. H.

Pic, E.

Pockolle, J. P.

P. Robin, P. LeBarng, D. Broussoux, J. P. Pockolle, and V. Lemoine, “Optoelectronic devices with nonlinear optical polymers,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 481–488.

Reck, B.

D. Jungbauer, I. Teraoka, D. Y. Yoon, B. Reck, J. D. Swalen, R. J. Twieg, and C. G. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[Crossref]

R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Willson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
[Crossref]

M. Eich, B. Reck, D. Y. Yoon, C. G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking induced vitrification under electric field,” J. Appl. Phys. 66, 3241–3247 (1989).
[Crossref]

J. D. Swalen, G. C. Bjorklund, W. Fleming, S. Herminghaus, D. Jungbauer, M. C. Jurich, W. E. Moerner, B. Reck, B. A. Smith, R. J. Twieg, C. G. Willson, and R. Zentel, “Poled epoxy polymers for optoelectronics,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 433–445.

Reinisch, R.

Robin, P.

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of ferroelectric polymers studied by attenuated total reflectance,” Opt. Commun. 69, 379–383 (1989).
[Crossref]

P. Robin, P. LeBarng, D. Broussoux, J. P. Pockolle, and V. Lemoine, “Optoelectronic devices with nonlinear optical polymers,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 481–488.

Sasaki, K.

Schildkraut, J.

Sen, A.

Singer, K. D.

K. D. Singer, S. L. Lalama, J. E. Sohn, and R. D. Small, “Electro-optic organic materials,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987), Vol. 1, pp. 435–468.

Small, R. D.

K. D. Singer, S. L. Lalama, J. E. Sohn, and R. D. Small, “Electro-optic organic materials,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987), Vol. 1, pp. 435–468.

Smith, B. A.

J. D. Swalen, G. C. Bjorklund, W. Fleming, S. Herminghaus, D. Jungbauer, M. C. Jurich, W. E. Moerner, B. Reck, B. A. Smith, R. J. Twieg, C. G. Willson, and R. Zentel, “Poled epoxy polymers for optoelectronics,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 433–445.

Sohn, J. E.

K. D. Singer, S. L. Lalama, J. E. Sohn, and R. D. Small, “Electro-optic organic materials,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987), Vol. 1, pp. 435–468.

Stewart, J. J. P.

H. A. Kurz, J. J. P. Stewart, and K. M. Dieter, “Calculation of the nonlinear optical properties of Molecules,” J. Computat. Chem. 11, 82–87 (1990).
[Crossref]

Swalen, J. D.

D. Jungbauer, I. Teraoka, D. Y. Yoon, B. Reck, J. D. Swalen, R. J. Twieg, and C. G. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[Crossref]

R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Willson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
[Crossref]

J. D. Swalen, “Optical properties of Langmuir–Blodgett films,” J. Mol. Electron. 2, 155–181(1986).

J. D. Swalen, G. C. Bjorklund, W. Fleming, S. Herminghaus, D. Jungbauer, M. C. Jurich, W. E. Moerner, B. Reck, B. A. Smith, R. J. Twieg, C. G. Willson, and R. Zentel, “Poled epoxy polymers for optoelectronics,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 433–445.

Teraoka, I.

D. Jungbauer, I. Teraoka, D. Y. Yoon, B. Reck, J. D. Swalen, R. J. Twieg, and C. G. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[Crossref]

Twieg, R. J.

D. Jungbauer, I. Teraoka, D. Y. Yoon, B. Reck, J. D. Swalen, R. J. Twieg, and C. G. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[Crossref]

R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Willson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
[Crossref]

J. D. Swalen, G. C. Bjorklund, W. Fleming, S. Herminghaus, D. Jungbauer, M. C. Jurich, W. E. Moerner, B. Reck, B. A. Smith, R. J. Twieg, C. G. Willson, and R. Zentel, “Poled epoxy polymers for optoelectronics,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 433–445.

Vincent, P.

Willson, C. G.

D. Jungbauer, I. Teraoka, D. Y. Yoon, B. Reck, J. D. Swalen, R. J. Twieg, and C. G. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[Crossref]

R. H. Page, M. C. Jurich, B. Reck, A. Sen, R. J. Twieg, J. D. Swalen, G. C. Bjorklund, and C. G. Willson, “Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films,” J. Opt. Soc. Am. B 7, 1239–1250 (1990).
[Crossref]

M. Eich, B. Reck, D. Y. Yoon, C. G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking induced vitrification under electric field,” J. Appl. Phys. 66, 3241–3247 (1989).
[Crossref]

J. D. Swalen, G. C. Bjorklund, W. Fleming, S. Herminghaus, D. Jungbauer, M. C. Jurich, W. E. Moerner, B. Reck, B. A. Smith, R. J. Twieg, C. G. Willson, and R. Zentel, “Poled epoxy polymers for optoelectronics,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 433–445.

Yoon, D. Y.

D. Jungbauer, I. Teraoka, D. Y. Yoon, B. Reck, J. D. Swalen, R. J. Twieg, and C. G. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[Crossref]

M. Eich, G. C. Bjorklund, and D. Y. Yoon, “Poled amorphous polymers for second-order nonlinear optics,” Polym. Adv. Technol. 1, 189–198 (1990).
[Crossref]

M. Eich, B. Reck, D. Y. Yoon, C. G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking induced vitrification under electric field,” J. Appl. Phys. 66, 3241–3247 (1989).
[Crossref]

Zentel, R.

J. D. Swalen, G. C. Bjorklund, W. Fleming, S. Herminghaus, D. Jungbauer, M. C. Jurich, W. E. Moerner, B. Reck, B. A. Smith, R. J. Twieg, C. G. Willson, and R. Zentel, “Poled epoxy polymers for optoelectronics,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 433–445.

Zhang, G.

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

S. Ducharme, J. Feinberg, and R. Neurgaonkar, “Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate,” IEEE J. Quantum Electron. QE-23, 2116–2120 (1987).
[Crossref]

J. Appl. Phys. (2)

M. Eich, B. Reck, D. Y. Yoon, C. G. Willson, and G. C. Bjorklund, “Novel second-order nonlinear optical polymers via chemical cross-linking induced vitrification under electric field,” J. Appl. Phys. 66, 3241–3247 (1989).
[Crossref]

D. Jungbauer, I. Teraoka, D. Y. Yoon, B. Reck, J. D. Swalen, R. J. Twieg, and C. G. Willson, “Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores,” J. Appl. Phys. 69, 8011–8017 (1991).
[Crossref]

J. Computat. Chem. (1)

H. A. Kurz, J. J. P. Stewart, and K. M. Dieter, “Calculation of the nonlinear optical properties of Molecules,” J. Computat. Chem. 11, 82–87 (1990).
[Crossref]

J. Mol. Electron. (1)

J. D. Swalen, “Optical properties of Langmuir–Blodgett films,” J. Mol. Electron. 2, 155–181(1986).

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of ferroelectric polymers studied by attenuated total reflectance,” Opt. Commun. 69, 379–383 (1989).
[Crossref]

Polym. Adv. Technol. (1)

M. Eich, G. C. Bjorklund, and D. Y. Yoon, “Poled amorphous polymers for second-order nonlinear optics,” Polym. Adv. Technol. 1, 189–198 (1990).
[Crossref]

Other (7)

J. D. Swalen, G. C. Bjorklund, W. Fleming, S. Herminghaus, D. Jungbauer, M. C. Jurich, W. E. Moerner, B. Reck, B. A. Smith, R. J. Twieg, C. G. Willson, and R. Zentel, “Poled epoxy polymers for optoelectronics,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 433–445.

Although these films are often slightly anisotropic because of the spin-casting process, there is no preferred orientation of the NLO moieties.

Because of the high refractive index of the polymer, the surface plasmon resonance of the gold film could not be observed in our experiment.

M. Dumont, Y. Levy, and D. Morichere, “Electrooptic organic waveguides: optical characterization,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 461–480.

K. D. Singer, S. L. Lalama, J. E. Sohn, and R. D. Small, “Electro-optic organic materials,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987), Vol. 1, pp. 435–468.

P. Robin, P. LeBarng, D. Broussoux, J. P. Pockolle, and V. Lemoine, “Optoelectronic devices with nonlinear optical polymers,” in Proceedings of the NATO Conference on Organic Molecules for Nonlinear Optics and Photonics, J. Messier, ed. (Kluwer Academic, Norwell, Mass., 1990), pp. 481–488.

H. F. Mark, N. G. Gaylord, and N. M. Bikales, eds., Encyclopedia of Polymer Science and Technology (Wiley, New York, 1967), Vol. 6, p. 221.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Molecular structure of the linear epoxy polymer Bis-A-ANT.

Fig. 2
Fig. 2

Reflected intensity calculated for a setup like that sketched in the inset (ATR spectrum). Each reflectivity minimum corresponds to a waveguide mode. The calculation is performed for TE polarization. The gold and waveguide thicknesses are 61 and 850 nm, respectively. The refractive indices are 1.88 for the prism, 0.19 + i3.56 for the gold, and 1.7 for the waveguide.

Fig. 3
Fig. 3

Experimental setup. Measurements were performed with both TE and TM polarization at a wavelength of 632.8 nm. The polymer layers (buffer layer and active layer) were prepared from solutions by spin casting.

Fig. 4
Fig. 4

Signals obtained for a typical sample. The thicknesses of the active layer and the buffer layer were 588 and 210 nm, respectively. (a) Reflected intensity (ATR spectrum), (b) lock-in signal obtained by electric-field modulation.

Fig. 5
Fig. 5

The electro-optic coefficients r13 (circles) and r33 (squares) versus the square root of the birefringence Δn The dashed lines in (b) represent the solid lines in (a).

Fig. 6
Fig. 6

The ratio R = nTM4r33/nTE4r13 of the second-order susceptibilities versus the square root of the birefringence Δn.

Tables (1)

Tables Icon

Table 1 Waveguide Measurement Values Obtained with the Sample Used for the Signals in Fig. 4a

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

r 13 = 2 n TE 3 n TE E ,
r 33 = 2 n TM 3 n TM E ,
n ( θ ) d θ exp ( u cos θ ) sin θ d θ .
R = n TM 4 r 33 n TE 4 r 13 = 2 cos 3 θ cos θ - cos 3 θ 3.
H = i = 1 N μ E cos θ i + H I ( { ϕ i } , { cos θ i } ) ,
cos δ θ ( cos θ ) δ S [ { i } , ( cos θ ) 2 ] × exp [ μ E N cos θ + H I [ { i } , ( cos θ ) 2 ] k T ] d ( cos θ ) d { i } ,
m ( Ω ) d Ω = ½ ( sin Ω ) d Ω .
m p ( Ω ) = ½ sin 1 / ( 1 - ν ) Ω ,
m p ( Ω ) n ( Φ ) = [ 1 + u sin Ω cos Φ + ( u 2 / 2 ) sin 2 Ω cos 2 Φ ] sin 1 / ( 1 - ν ) Ω 2 π [ 1 + ( u 2 / 4 ) sin 2 Ω ] ,
R = 6 ( 3 ν - 4 ) ( 7 ν - 8 ) + 12 ( 3 ν - 4 ) ( ν - 1 ) 2 ( 7 ν - 8 ) 2 ( 6 ν - 7 ) u 2 + O ( u 4 ) .
r 33 = C ( Δ n ) 1 / 2 n TM 4 ,
C = β α ( 0 ) + 2 3 [ 4 π N α 9 3 n ( n 2 + 2 ) 2 a ( ν ) ] 1 / 2 ,
a ( ν ) = ( ν - 2 ) ( 3 ν - 4 ) ( 2 ν - 3 ) ( 4 ν - 5 ) .
μ E appl k T = 8 n β α Δ n r 33 ,

Metrics