Abstract

An all-acousto-optically switched picosecond Nd:YAG regenerative amplifier has been developed for operation at pulse repetition rates in the 20–100-kHz range. The amplifier produces stable 50-ps pulses at 1064 nm in a TEM00 transverse mode with pulse energies of the order of 20–100 μJ. Generation of the second harmonic at 532 nm in KTP crystal results in conversion efficiencies greater than 40%. Using the frequency-doubled TEM00 output of the regenerative amplifier to pump a two-pass dye amplifier, we have amplified the 50-fs output pulses from an antiresonant ring dye laser to the 200-nJ level and have successfully produced a stable white-light continuum at a 100-kHz repetition rate. This preliminary demonstration of synchronous dye-laser amplification and continuum generation attests to the overall quality of the regenerative amplifier output and the general utility of this approach for high-repetition-rate amplification. Limitations of the current regenerative amplifier design and scaling to higher pulse energies are briefly discussed.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Lowdermilk, J. E. Murray, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 2436–2434 (1980).
    [CrossRef]
  2. W. H. Lowdermilk, J. E. Murray, “The multipass amplifier: theory and experiment,” J. Appl. Phys. 51, 3548–3555 (1980).
    [CrossRef]
  3. H. Boersch, G. Herziger, “Theoretical and experimental investigation of regenerative laser amplifiers and their applications,” IEEE J. Quantum Electron. 2, 549–552 (1966).
    [CrossRef]
  4. P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
    [CrossRef]
  5. M. Pessot, J. Squier, P. Bado, G. Mourou, D. J. Harter, “Chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
    [CrossRef]
  6. L. Yan, P. T. Ho, C. H. Lee, G. L. Burdge, “Generation of ultrashort pulses from a neodymium glass laser system,” IEEE J. Quantum Electron. 25, 2431–2440 (1989).
    [CrossRef]
  7. Y. J. Chang, C. Veas, J. B. Hopkins, “Regenerative amplification of temporally compressed picosecond pulses at 2 kHz,” Appl. Phys. Lett. 49, 1758–1760 (1986).
    [CrossRef]
  8. J. S. Coe, P. Maine, P. Bado, “Regenerative amplification of picosecond pulses in Nd:YLF: gain narrowing and gain saturation,” J. Opt. Soc. Am. B 5, 2560–2563 (1988).
    [CrossRef]
  9. T. Sizer, I. N. Dulling, “Neodymium lasers as a source of synchronized high-power optical pulses,” IEEE J. Quantum Electron. 24, 404–409 (1988).
    [CrossRef]
  10. P. Bado, M. Bouvier, J. S. Coe, “Nd:YLF mode-locked oscillator and regenerative amplifier,” Opt. Lett. 12, 319–321 (1987).
    [CrossRef] [PubMed]
  11. J. C. Postlewaite, J. B. Meirs, C. C. Reiner, D. D. Dlott, “Picosecond Nd:YAG regenerative amplifier with acoustooptic injection and electrooptic VFET pulse switchout,” IEEE J. Quantum Electron. 24, 411–417 (1988).
    [CrossRef]
  12. X. D. Wang, P. Basseras, R. J. D. Miller, J. Sweetser, I. A. Walmsley, “Regenerative pulse amplification in the 10-kHz range,” Opt. Lett. 15, 839–841 (1990).
    [CrossRef] [PubMed]
  13. T. Sizer, J. D. Kafka, I. N. Duling, C. W. Gabel, G. A. Mourou, “Synchronous amplification of subpicosecond pulses,” IEEE J. Quantum Electron. 19, 506–511 (1983).
    [CrossRef]
  14. I. N. Duling, T. Norris, T. Sizer, P. Bado, G. Mourou, “Kilohertz synchronous amplification of 85-femtosecond optical pulses,” J. Opt. Soc. Am. B 2, 616–618 (1985).
    [CrossRef]
  15. W. H. Knox, M. C. Downer, R. L. Fork, C. V. Shank, “Amplified femtosecond optical pulses and continuum generation at 5-kHz repetition rate,” Opt. Lett. 9, 552–554 (1984).
    [CrossRef] [PubMed]
  16. W. H. Knox, “Generation and kilohertz-rate amplification of femtosecond optical pulses around 800 nm,” J. Opt. Soc. Am. B 4, 1771–1776 (1987).
    [CrossRef]
  17. W. H. Knox, “Femtosecond optical pulse amplification,” IEEE J. Quantum Electron. 24, 2431–2440 (1988), and references therein.
    [CrossRef]
  18. K. J. Choi, T. L. Gustafson, “Simultaneous compression and amplification of ultrashort pulses at MHz repetition rates,” IEEE J. Quantum Electron. 25, 2441–2444 (1989).
    [CrossRef]
  19. M. C. Downer, R. L. Fork, M. Islam, “3 MHz amplifier for femtosecond optical pulses,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 27–29.
    [CrossRef]
  20. T. J. Gustafson, D. M. Roberts, “High repetition rate amplifier for the synchronously pumped cavity-dumped dye laser,” Opt. Commun. 43, 141–144 (1982).
    [CrossRef]
  21. D. Cotter, “Technique for highly stable active modelocking,” in Ultrafast Phenomena IV, D. A. Austin, K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984) pp. 78–80.
    [CrossRef]
  22. M. J. W. Rodwell, D. M. Bloom, K. J. Weingarten, “Sub-picosecond laser timing stabilization,” IEEE J. Quantum Electron. 25, 817–827 (1989).
    [CrossRef]
  23. D. Maydan, “Fast modulator for extraction of internal laser power,” J. Appl. Phys. 41, 1552–1559 (1970).
    [CrossRef]
  24. R. H. Johnson, “Characteristics of acoustooptic cavity dumping in a modelocked laser,” IEEE J. Quantum Electron. 9, 255–257 (1973).
    [CrossRef]
  25. C. J. Kennedy, “Cavity-dumping single mode-locked pulses from a Nd:YAG laser,” Appl. Opt. 15, 2623–2624 (1976).
    [CrossRef] [PubMed]
  26. H. A. Kruegle, L. Klein, “High peak power output, high PRF by cavity dumping a Nd:YAG,” Appl. Opt. 15, 466–471 (1976).
    [CrossRef] [PubMed]
  27. W. Koechner, Solid State Laser Engineering (New York, Springer-Verlag, 1976) 159–160.
  28. D. C. Brown, High Peak Power Nd:Glass Laser Systems (Springer-Verlag, New York, 1981).
    [CrossRef]
  29. G. D. Baldwin, “Output power calculations for a continuously pumped Q-switched Nd:YAG laser,” IEEE J. Quantum Electron. 7, 220–224 (1971).
    [CrossRef]
  30. R. B. Chesler, M. A. Karr, J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAG lasers,” IEEE J. Quantum Electron. 58, 1899–1914 (1970).
  31. Laser Damage Testing Laboratory, Montana Laser Optics, Inc., P. O. Box 4151, Bozeman, Mont. 59772.
  32. D. Milam, “Laser-induced damage at 1064 nm, 125 psec,” Appl. Opt. 16, 1204–1213 (1977).
    [CrossRef] [PubMed]

1990 (1)

1989 (4)

K. J. Choi, T. L. Gustafson, “Simultaneous compression and amplification of ultrashort pulses at MHz repetition rates,” IEEE J. Quantum Electron. 25, 2441–2444 (1989).
[CrossRef]

M. Pessot, J. Squier, P. Bado, G. Mourou, D. J. Harter, “Chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
[CrossRef]

L. Yan, P. T. Ho, C. H. Lee, G. L. Burdge, “Generation of ultrashort pulses from a neodymium glass laser system,” IEEE J. Quantum Electron. 25, 2431–2440 (1989).
[CrossRef]

M. J. W. Rodwell, D. M. Bloom, K. J. Weingarten, “Sub-picosecond laser timing stabilization,” IEEE J. Quantum Electron. 25, 817–827 (1989).
[CrossRef]

1988 (5)

J. S. Coe, P. Maine, P. Bado, “Regenerative amplification of picosecond pulses in Nd:YLF: gain narrowing and gain saturation,” J. Opt. Soc. Am. B 5, 2560–2563 (1988).
[CrossRef]

T. Sizer, I. N. Dulling, “Neodymium lasers as a source of synchronized high-power optical pulses,” IEEE J. Quantum Electron. 24, 404–409 (1988).
[CrossRef]

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

J. C. Postlewaite, J. B. Meirs, C. C. Reiner, D. D. Dlott, “Picosecond Nd:YAG regenerative amplifier with acoustooptic injection and electrooptic VFET pulse switchout,” IEEE J. Quantum Electron. 24, 411–417 (1988).
[CrossRef]

W. H. Knox, “Femtosecond optical pulse amplification,” IEEE J. Quantum Electron. 24, 2431–2440 (1988), and references therein.
[CrossRef]

1987 (2)

1986 (1)

Y. J. Chang, C. Veas, J. B. Hopkins, “Regenerative amplification of temporally compressed picosecond pulses at 2 kHz,” Appl. Phys. Lett. 49, 1758–1760 (1986).
[CrossRef]

1985 (1)

1984 (1)

1983 (1)

T. Sizer, J. D. Kafka, I. N. Duling, C. W. Gabel, G. A. Mourou, “Synchronous amplification of subpicosecond pulses,” IEEE J. Quantum Electron. 19, 506–511 (1983).
[CrossRef]

1982 (1)

T. J. Gustafson, D. M. Roberts, “High repetition rate amplifier for the synchronously pumped cavity-dumped dye laser,” Opt. Commun. 43, 141–144 (1982).
[CrossRef]

1980 (2)

W. H. Lowdermilk, J. E. Murray, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 2436–2434 (1980).
[CrossRef]

W. H. Lowdermilk, J. E. Murray, “The multipass amplifier: theory and experiment,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

1977 (1)

1976 (2)

1973 (1)

R. H. Johnson, “Characteristics of acoustooptic cavity dumping in a modelocked laser,” IEEE J. Quantum Electron. 9, 255–257 (1973).
[CrossRef]

1971 (1)

G. D. Baldwin, “Output power calculations for a continuously pumped Q-switched Nd:YAG laser,” IEEE J. Quantum Electron. 7, 220–224 (1971).
[CrossRef]

1970 (2)

R. B. Chesler, M. A. Karr, J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAG lasers,” IEEE J. Quantum Electron. 58, 1899–1914 (1970).

D. Maydan, “Fast modulator for extraction of internal laser power,” J. Appl. Phys. 41, 1552–1559 (1970).
[CrossRef]

1966 (1)

H. Boersch, G. Herziger, “Theoretical and experimental investigation of regenerative laser amplifiers and their applications,” IEEE J. Quantum Electron. 2, 549–552 (1966).
[CrossRef]

Bado, P.

M. Pessot, J. Squier, P. Bado, G. Mourou, D. J. Harter, “Chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
[CrossRef]

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

J. S. Coe, P. Maine, P. Bado, “Regenerative amplification of picosecond pulses in Nd:YLF: gain narrowing and gain saturation,” J. Opt. Soc. Am. B 5, 2560–2563 (1988).
[CrossRef]

P. Bado, M. Bouvier, J. S. Coe, “Nd:YLF mode-locked oscillator and regenerative amplifier,” Opt. Lett. 12, 319–321 (1987).
[CrossRef] [PubMed]

I. N. Duling, T. Norris, T. Sizer, P. Bado, G. Mourou, “Kilohertz synchronous amplification of 85-femtosecond optical pulses,” J. Opt. Soc. Am. B 2, 616–618 (1985).
[CrossRef]

Baldwin, G. D.

G. D. Baldwin, “Output power calculations for a continuously pumped Q-switched Nd:YAG laser,” IEEE J. Quantum Electron. 7, 220–224 (1971).
[CrossRef]

Basseras, P.

Bloom, D. M.

M. J. W. Rodwell, D. M. Bloom, K. J. Weingarten, “Sub-picosecond laser timing stabilization,” IEEE J. Quantum Electron. 25, 817–827 (1989).
[CrossRef]

Boersch, H.

H. Boersch, G. Herziger, “Theoretical and experimental investigation of regenerative laser amplifiers and their applications,” IEEE J. Quantum Electron. 2, 549–552 (1966).
[CrossRef]

Bouvier, M.

Brown, D. C.

D. C. Brown, High Peak Power Nd:Glass Laser Systems (Springer-Verlag, New York, 1981).
[CrossRef]

Burdge, G. L.

L. Yan, P. T. Ho, C. H. Lee, G. L. Burdge, “Generation of ultrashort pulses from a neodymium glass laser system,” IEEE J. Quantum Electron. 25, 2431–2440 (1989).
[CrossRef]

Chang, Y. J.

Y. J. Chang, C. Veas, J. B. Hopkins, “Regenerative amplification of temporally compressed picosecond pulses at 2 kHz,” Appl. Phys. Lett. 49, 1758–1760 (1986).
[CrossRef]

Chesler, R. B.

R. B. Chesler, M. A. Karr, J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAG lasers,” IEEE J. Quantum Electron. 58, 1899–1914 (1970).

Choi, K. J.

K. J. Choi, T. L. Gustafson, “Simultaneous compression and amplification of ultrashort pulses at MHz repetition rates,” IEEE J. Quantum Electron. 25, 2441–2444 (1989).
[CrossRef]

Coe, J. S.

Cotter, D.

D. Cotter, “Technique for highly stable active modelocking,” in Ultrafast Phenomena IV, D. A. Austin, K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984) pp. 78–80.
[CrossRef]

Dlott, D. D.

J. C. Postlewaite, J. B. Meirs, C. C. Reiner, D. D. Dlott, “Picosecond Nd:YAG regenerative amplifier with acoustooptic injection and electrooptic VFET pulse switchout,” IEEE J. Quantum Electron. 24, 411–417 (1988).
[CrossRef]

Downer, M. C.

W. H. Knox, M. C. Downer, R. L. Fork, C. V. Shank, “Amplified femtosecond optical pulses and continuum generation at 5-kHz repetition rate,” Opt. Lett. 9, 552–554 (1984).
[CrossRef] [PubMed]

M. C. Downer, R. L. Fork, M. Islam, “3 MHz amplifier for femtosecond optical pulses,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 27–29.
[CrossRef]

Duling, I. N.

I. N. Duling, T. Norris, T. Sizer, P. Bado, G. Mourou, “Kilohertz synchronous amplification of 85-femtosecond optical pulses,” J. Opt. Soc. Am. B 2, 616–618 (1985).
[CrossRef]

T. Sizer, J. D. Kafka, I. N. Duling, C. W. Gabel, G. A. Mourou, “Synchronous amplification of subpicosecond pulses,” IEEE J. Quantum Electron. 19, 506–511 (1983).
[CrossRef]

Dulling, I. N.

T. Sizer, I. N. Dulling, “Neodymium lasers as a source of synchronized high-power optical pulses,” IEEE J. Quantum Electron. 24, 404–409 (1988).
[CrossRef]

Fork, R. L.

W. H. Knox, M. C. Downer, R. L. Fork, C. V. Shank, “Amplified femtosecond optical pulses and continuum generation at 5-kHz repetition rate,” Opt. Lett. 9, 552–554 (1984).
[CrossRef] [PubMed]

M. C. Downer, R. L. Fork, M. Islam, “3 MHz amplifier for femtosecond optical pulses,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 27–29.
[CrossRef]

Gabel, C. W.

T. Sizer, J. D. Kafka, I. N. Duling, C. W. Gabel, G. A. Mourou, “Synchronous amplification of subpicosecond pulses,” IEEE J. Quantum Electron. 19, 506–511 (1983).
[CrossRef]

Geusic, J. E.

R. B. Chesler, M. A. Karr, J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAG lasers,” IEEE J. Quantum Electron. 58, 1899–1914 (1970).

Gustafson, T. J.

T. J. Gustafson, D. M. Roberts, “High repetition rate amplifier for the synchronously pumped cavity-dumped dye laser,” Opt. Commun. 43, 141–144 (1982).
[CrossRef]

Gustafson, T. L.

K. J. Choi, T. L. Gustafson, “Simultaneous compression and amplification of ultrashort pulses at MHz repetition rates,” IEEE J. Quantum Electron. 25, 2441–2444 (1989).
[CrossRef]

Harter, D. J.

M. Pessot, J. Squier, P. Bado, G. Mourou, D. J. Harter, “Chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
[CrossRef]

Herziger, G.

H. Boersch, G. Herziger, “Theoretical and experimental investigation of regenerative laser amplifiers and their applications,” IEEE J. Quantum Electron. 2, 549–552 (1966).
[CrossRef]

Ho, P. T.

L. Yan, P. T. Ho, C. H. Lee, G. L. Burdge, “Generation of ultrashort pulses from a neodymium glass laser system,” IEEE J. Quantum Electron. 25, 2431–2440 (1989).
[CrossRef]

Hopkins, J. B.

Y. J. Chang, C. Veas, J. B. Hopkins, “Regenerative amplification of temporally compressed picosecond pulses at 2 kHz,” Appl. Phys. Lett. 49, 1758–1760 (1986).
[CrossRef]

Islam, M.

M. C. Downer, R. L. Fork, M. Islam, “3 MHz amplifier for femtosecond optical pulses,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 27–29.
[CrossRef]

Johnson, R. H.

R. H. Johnson, “Characteristics of acoustooptic cavity dumping in a modelocked laser,” IEEE J. Quantum Electron. 9, 255–257 (1973).
[CrossRef]

Kafka, J. D.

T. Sizer, J. D. Kafka, I. N. Duling, C. W. Gabel, G. A. Mourou, “Synchronous amplification of subpicosecond pulses,” IEEE J. Quantum Electron. 19, 506–511 (1983).
[CrossRef]

Karr, M. A.

R. B. Chesler, M. A. Karr, J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAG lasers,” IEEE J. Quantum Electron. 58, 1899–1914 (1970).

Kennedy, C. J.

Klein, L.

Knox, W. H.

Koechner, W.

W. Koechner, Solid State Laser Engineering (New York, Springer-Verlag, 1976) 159–160.

Kruegle, H. A.

Lee, C. H.

L. Yan, P. T. Ho, C. H. Lee, G. L. Burdge, “Generation of ultrashort pulses from a neodymium glass laser system,” IEEE J. Quantum Electron. 25, 2431–2440 (1989).
[CrossRef]

Lowdermilk, W. H.

W. H. Lowdermilk, J. E. Murray, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 2436–2434 (1980).
[CrossRef]

W. H. Lowdermilk, J. E. Murray, “The multipass amplifier: theory and experiment,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

Maine, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

J. S. Coe, P. Maine, P. Bado, “Regenerative amplification of picosecond pulses in Nd:YLF: gain narrowing and gain saturation,” J. Opt. Soc. Am. B 5, 2560–2563 (1988).
[CrossRef]

Maydan, D.

D. Maydan, “Fast modulator for extraction of internal laser power,” J. Appl. Phys. 41, 1552–1559 (1970).
[CrossRef]

Meirs, J. B.

J. C. Postlewaite, J. B. Meirs, C. C. Reiner, D. D. Dlott, “Picosecond Nd:YAG regenerative amplifier with acoustooptic injection and electrooptic VFET pulse switchout,” IEEE J. Quantum Electron. 24, 411–417 (1988).
[CrossRef]

Milam, D.

Miller, R. J. D.

Mourou, G.

M. Pessot, J. Squier, P. Bado, G. Mourou, D. J. Harter, “Chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
[CrossRef]

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

I. N. Duling, T. Norris, T. Sizer, P. Bado, G. Mourou, “Kilohertz synchronous amplification of 85-femtosecond optical pulses,” J. Opt. Soc. Am. B 2, 616–618 (1985).
[CrossRef]

Mourou, G. A.

T. Sizer, J. D. Kafka, I. N. Duling, C. W. Gabel, G. A. Mourou, “Synchronous amplification of subpicosecond pulses,” IEEE J. Quantum Electron. 19, 506–511 (1983).
[CrossRef]

Murray, J. E.

W. H. Lowdermilk, J. E. Murray, “The multipass amplifier: theory and experiment,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

W. H. Lowdermilk, J. E. Murray, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 2436–2434 (1980).
[CrossRef]

Norris, T.

Pessot, M.

M. Pessot, J. Squier, P. Bado, G. Mourou, D. J. Harter, “Chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
[CrossRef]

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Postlewaite, J. C.

J. C. Postlewaite, J. B. Meirs, C. C. Reiner, D. D. Dlott, “Picosecond Nd:YAG regenerative amplifier with acoustooptic injection and electrooptic VFET pulse switchout,” IEEE J. Quantum Electron. 24, 411–417 (1988).
[CrossRef]

Reiner, C. C.

J. C. Postlewaite, J. B. Meirs, C. C. Reiner, D. D. Dlott, “Picosecond Nd:YAG regenerative amplifier with acoustooptic injection and electrooptic VFET pulse switchout,” IEEE J. Quantum Electron. 24, 411–417 (1988).
[CrossRef]

Roberts, D. M.

T. J. Gustafson, D. M. Roberts, “High repetition rate amplifier for the synchronously pumped cavity-dumped dye laser,” Opt. Commun. 43, 141–144 (1982).
[CrossRef]

Rodwell, M. J. W.

M. J. W. Rodwell, D. M. Bloom, K. J. Weingarten, “Sub-picosecond laser timing stabilization,” IEEE J. Quantum Electron. 25, 817–827 (1989).
[CrossRef]

Shank, C. V.

Sizer, T.

T. Sizer, I. N. Dulling, “Neodymium lasers as a source of synchronized high-power optical pulses,” IEEE J. Quantum Electron. 24, 404–409 (1988).
[CrossRef]

I. N. Duling, T. Norris, T. Sizer, P. Bado, G. Mourou, “Kilohertz synchronous amplification of 85-femtosecond optical pulses,” J. Opt. Soc. Am. B 2, 616–618 (1985).
[CrossRef]

T. Sizer, J. D. Kafka, I. N. Duling, C. W. Gabel, G. A. Mourou, “Synchronous amplification of subpicosecond pulses,” IEEE J. Quantum Electron. 19, 506–511 (1983).
[CrossRef]

Squier, J.

M. Pessot, J. Squier, P. Bado, G. Mourou, D. J. Harter, “Chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
[CrossRef]

Strickland, D.

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Sweetser, J.

Veas, C.

Y. J. Chang, C. Veas, J. B. Hopkins, “Regenerative amplification of temporally compressed picosecond pulses at 2 kHz,” Appl. Phys. Lett. 49, 1758–1760 (1986).
[CrossRef]

Walmsley, I. A.

Wang, X. D.

Weingarten, K. J.

M. J. W. Rodwell, D. M. Bloom, K. J. Weingarten, “Sub-picosecond laser timing stabilization,” IEEE J. Quantum Electron. 25, 817–827 (1989).
[CrossRef]

Yan, L.

L. Yan, P. T. Ho, C. H. Lee, G. L. Burdge, “Generation of ultrashort pulses from a neodymium glass laser system,” IEEE J. Quantum Electron. 25, 2431–2440 (1989).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

Y. J. Chang, C. Veas, J. B. Hopkins, “Regenerative amplification of temporally compressed picosecond pulses at 2 kHz,” Appl. Phys. Lett. 49, 1758–1760 (1986).
[CrossRef]

IEEE J. Quantum Electron. (13)

H. Boersch, G. Herziger, “Theoretical and experimental investigation of regenerative laser amplifiers and their applications,” IEEE J. Quantum Electron. 2, 549–552 (1966).
[CrossRef]

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

M. Pessot, J. Squier, P. Bado, G. Mourou, D. J. Harter, “Chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
[CrossRef]

L. Yan, P. T. Ho, C. H. Lee, G. L. Burdge, “Generation of ultrashort pulses from a neodymium glass laser system,” IEEE J. Quantum Electron. 25, 2431–2440 (1989).
[CrossRef]

T. Sizer, I. N. Dulling, “Neodymium lasers as a source of synchronized high-power optical pulses,” IEEE J. Quantum Electron. 24, 404–409 (1988).
[CrossRef]

J. C. Postlewaite, J. B. Meirs, C. C. Reiner, D. D. Dlott, “Picosecond Nd:YAG regenerative amplifier with acoustooptic injection and electrooptic VFET pulse switchout,” IEEE J. Quantum Electron. 24, 411–417 (1988).
[CrossRef]

T. Sizer, J. D. Kafka, I. N. Duling, C. W. Gabel, G. A. Mourou, “Synchronous amplification of subpicosecond pulses,” IEEE J. Quantum Electron. 19, 506–511 (1983).
[CrossRef]

W. H. Knox, “Femtosecond optical pulse amplification,” IEEE J. Quantum Electron. 24, 2431–2440 (1988), and references therein.
[CrossRef]

K. J. Choi, T. L. Gustafson, “Simultaneous compression and amplification of ultrashort pulses at MHz repetition rates,” IEEE J. Quantum Electron. 25, 2441–2444 (1989).
[CrossRef]

R. H. Johnson, “Characteristics of acoustooptic cavity dumping in a modelocked laser,” IEEE J. Quantum Electron. 9, 255–257 (1973).
[CrossRef]

G. D. Baldwin, “Output power calculations for a continuously pumped Q-switched Nd:YAG laser,” IEEE J. Quantum Electron. 7, 220–224 (1971).
[CrossRef]

R. B. Chesler, M. A. Karr, J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAG lasers,” IEEE J. Quantum Electron. 58, 1899–1914 (1970).

M. J. W. Rodwell, D. M. Bloom, K. J. Weingarten, “Sub-picosecond laser timing stabilization,” IEEE J. Quantum Electron. 25, 817–827 (1989).
[CrossRef]

J. Appl. Phys. (3)

D. Maydan, “Fast modulator for extraction of internal laser power,” J. Appl. Phys. 41, 1552–1559 (1970).
[CrossRef]

W. H. Lowdermilk, J. E. Murray, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 2436–2434 (1980).
[CrossRef]

W. H. Lowdermilk, J. E. Murray, “The multipass amplifier: theory and experiment,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

T. J. Gustafson, D. M. Roberts, “High repetition rate amplifier for the synchronously pumped cavity-dumped dye laser,” Opt. Commun. 43, 141–144 (1982).
[CrossRef]

Opt. Lett. (3)

Other (5)

M. C. Downer, R. L. Fork, M. Islam, “3 MHz amplifier for femtosecond optical pulses,” in Ultrafast Phenomena IV, D. H. Auston, K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984), pp. 27–29.
[CrossRef]

D. Cotter, “Technique for highly stable active modelocking,” in Ultrafast Phenomena IV, D. A. Austin, K. B. Eisenthal, eds. (Springer-Verlag, New York, 1984) pp. 78–80.
[CrossRef]

W. Koechner, Solid State Laser Engineering (New York, Springer-Verlag, 1976) 159–160.

D. C. Brown, High Peak Power Nd:Glass Laser Systems (Springer-Verlag, New York, 1981).
[CrossRef]

Laser Damage Testing Laboratory, Montana Laser Optics, Inc., P. O. Box 4151, Bozeman, Mont. 59772.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental layout of the all-acousto-optically switched Nd:YAG regenerative amplifier. The amplifier consists of highly reflecting mirrors (M1–M3), an AO Bragg cell (BC), an AO Q switch (QS), a mode control aperture (A), and a Faraday isolator composed of a TGG Faraday rotator (FR), polarizers (P), and wave plates (λ/2’s).

Fig. 2
Fig. 2

Oscilloscope trace of the output pulse from the mode-locked master oscillator. A 20-ps rise-time Antel photodiode with Tektronix plug-in sampling units (7T11A, 7S11) and an S-6 sampling head (30-ps rise time) was used for the measurement. The pulse is estimated to be of the order of 50 ps after deconvolution of the detector response.

Fig. 3
Fig. 3

Oscilloscope traces of AO single-pulse selection from the mode-locked master oscillator. Top trace: 76-MHz master oscillator pulse train with a selected pulse missing. Bottom trace: single selected 50-ps pulse used for injected seeding. Traces are simultaneous outputs from two fast photodiodes.

Fig. 4
Fig. 4

Timing sequence of events for acousto-optically switched regenerative amplification. At t1 the rf power to the Q switch is turned off; at t2 a seed pulse is injected into the amplifier resonator by application of a short, 8-ns rf pulse to the Bragg cell. The injected pulse is then amplified and cavity-dumped at t3 by application of a second rf pulse to the Bragg cell. At t4 the rf power to the Q switch is turned on. The transition time for the Q switch is 250 s. All delays between events are electronically adjustable and optimized for operation at a given pulse repetition frequency.

Fig. 5
Fig. 5

Oscilloscope trace of the intracavity leakage light through mirror M2 sampled by a fast photodiode, illustrating the Q-switch envelope during regenerative amplifier operation at 100 kHz without cavity dumping. The horizontal scale is 50 ns/division. The separation between pulses is the 13-ns round-trip time of the amplifier cavity.

Fig. 6
Fig. 6

Simultaneous outputs from two fast photodiodes during regenerative amplifier operation at 100 kHz, including cavity dumping. Top trace: intracavity leakage monitored through M2 during cavity dumping. Bottom trace: cavity-dumped output pulse. Additional postpulses are primarily a result of photodiode ringing and distortion caused by overdriving the high-power rf amplifier for the Bragg cell. The scale is 50 ns/division.

Fig. 7
Fig. 7

Oscilloscope traces of 100-kHz regenerative amplifier output with the horizontal scale expanded. Top trace: 2-ns/division scale illustrating the high-power contrast of a single output pulse. The cavity round-trip time is 13 ns. The preceding pulse was not detectable under the measurement conditions. Bottom trace: 200-ps/division scale illustrating detector-limited response to a single-amplifier output pulse.

Fig. 8
Fig. 8

Energy per pulse and average power of the regenerative amplifier as a function of repetition rate. Filled circles are the measured energy per pulse, and triangles are the average power.

Fig. 9
Fig. 9

(a) Pulse-to-pulse amplitude alternation observed on output pulse train when the amplifier is allowed to run at 100 kHz with multitransverse modes as a repetitively Q-switched oscillator. (b) Intracavity leakage monitored through M2 on a fast photodiode, illustrating the modulation of a Q-switched envelope when the multimode oscillator is injection seeded. Under this condition, pulse alternation is no longer observed in the relative output pulse amplitudes.

Metrics