Abstract

The wave numbers of 167 Fe i lines between 26 000 and 34 100 cm−1 (385–293 nm), 146 Fe i lines between 33 700 and 51 400 cm−1 (297–195 nm), and 221 Fe ii lines between 35 900 and 54 600 cm−1 (279–183 nm) are measured with a relative precision of 30 parts in 109 by Fourier-transform spectrometry. Bridging techniques are used to place the measurements on the same Ar ii–based absolute wave-number scale as previously measured visible spectra. The uncertainty in the absolute wavelengths is limited by small source shifts and the accuracy of the available standards and is estimated to be 0.002 cm−1 (0.008 pm at 200 nm). This is an order of magnitude better than that of the majority of current UV standards.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. M. Learner and A. P. Thorne, “Wavelength calibration of Fourier transform emission spectra with application to Fe i,” J. Opt. Soc. Am. B 5, 2045–2059 (1988).
    [CrossRef]
  2. V. Kaufmann and B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25 000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
    [CrossRef]
  3. G. H. C. Freeman and W. H. King, “Cu ii spectral lines and their suitability as wavelength standards in the vacuum ultraviolet,” J. Phys. E 10, 894–897 (1977).
    [CrossRef]
  4. R. Engleman, “Accurate energy levels for neutral platinum,” J. Opt. Soc. Am. B 2, 1934–1941 (1985).
    [CrossRef]
  5. G. Norlén, University of Lund, Lund, Sweden, “Precise wavelengths in Fe ii (personal communication, 1985).
  6. G. Norlén, “Wavelengths and energy levels of Ar i and Ar ii based on new interferometric measurements in the region 3400–9800 Å,” Phys. Scr. 8, 249–269 (1973).
    [CrossRef]
  7. J. W. Brault, “Solar Fourier transform spectroscopy,” Osserv. Mem. Osserv. Astrofis. Arcetri 106, 33–50 (1979).
  8. A. P. Thorne, C. J. Harris, I. Wynne-Hones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet,” J. Phys. E 2054–60 (1987).
    [CrossRef]
  9. J. W. Brault, “High precision Fourier transform spectrometry,” Mikrochim. Acta (Wien) 1987 III, 215–227 (1988).
  10. I. Wynne-Jones, “Phase correcting an emission line spectrum,” Infrared Phys. 24, 273–275 (1984).
    [CrossRef]
  11. J. W. Brault and M. C. Abrams, “decomp: a Fourier transform spectra decomposition program,” in High Resolution Fourier Transform Spectroscopy, Vol. 6 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 110–112.
  12. H. M. Crosswhite, “The iron–neon hollow cathode spectrum,” J. Res. Natl. Bur. Stand,  79A, 17–53 (1975).
    [CrossRef]
  13. S. Johansson, “The spectrum and term system of Fe ii,” Phys. Scr. 18, 217–265 (1978).
    [CrossRef]
  14. R. W. Stanley and G. H. Dieke, “Interferometric wavelengths of iron lines from a hollow cathode discharge,” J. Opt. Soc. Am. 45, 280–286 (1955).
    [CrossRef]
  15. R. W. Stanley and W. F. Meggers, “Wavelengths from iron-halide lamps,” J. Res. Natl. Bur. Stand. 58, 41–49 (1957).
    [CrossRef]

1988 (2)

R. C. M. Learner and A. P. Thorne, “Wavelength calibration of Fourier transform emission spectra with application to Fe i,” J. Opt. Soc. Am. B 5, 2045–2059 (1988).
[CrossRef]

J. W. Brault, “High precision Fourier transform spectrometry,” Mikrochim. Acta (Wien) 1987 III, 215–227 (1988).

1987 (1)

A. P. Thorne, C. J. Harris, I. Wynne-Hones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet,” J. Phys. E 2054–60 (1987).
[CrossRef]

1985 (1)

1984 (1)

I. Wynne-Jones, “Phase correcting an emission line spectrum,” Infrared Phys. 24, 273–275 (1984).
[CrossRef]

1979 (1)

J. W. Brault, “Solar Fourier transform spectroscopy,” Osserv. Mem. Osserv. Astrofis. Arcetri 106, 33–50 (1979).

1978 (1)

S. Johansson, “The spectrum and term system of Fe ii,” Phys. Scr. 18, 217–265 (1978).
[CrossRef]

1977 (1)

G. H. C. Freeman and W. H. King, “Cu ii spectral lines and their suitability as wavelength standards in the vacuum ultraviolet,” J. Phys. E 10, 894–897 (1977).
[CrossRef]

1975 (1)

H. M. Crosswhite, “The iron–neon hollow cathode spectrum,” J. Res. Natl. Bur. Stand,  79A, 17–53 (1975).
[CrossRef]

1974 (1)

V. Kaufmann and B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25 000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[CrossRef]

1973 (1)

G. Norlén, “Wavelengths and energy levels of Ar i and Ar ii based on new interferometric measurements in the region 3400–9800 Å,” Phys. Scr. 8, 249–269 (1973).
[CrossRef]

1957 (1)

R. W. Stanley and W. F. Meggers, “Wavelengths from iron-halide lamps,” J. Res. Natl. Bur. Stand. 58, 41–49 (1957).
[CrossRef]

1955 (1)

Abrams, M. C.

J. W. Brault and M. C. Abrams, “decomp: a Fourier transform spectra decomposition program,” in High Resolution Fourier Transform Spectroscopy, Vol. 6 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 110–112.

Brault, J. W.

J. W. Brault, “High precision Fourier transform spectrometry,” Mikrochim. Acta (Wien) 1987 III, 215–227 (1988).

J. W. Brault, “Solar Fourier transform spectroscopy,” Osserv. Mem. Osserv. Astrofis. Arcetri 106, 33–50 (1979).

J. W. Brault and M. C. Abrams, “decomp: a Fourier transform spectra decomposition program,” in High Resolution Fourier Transform Spectroscopy, Vol. 6 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 110–112.

Cox, G.

A. P. Thorne, C. J. Harris, I. Wynne-Hones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet,” J. Phys. E 2054–60 (1987).
[CrossRef]

Crosswhite, H. M.

H. M. Crosswhite, “The iron–neon hollow cathode spectrum,” J. Res. Natl. Bur. Stand,  79A, 17–53 (1975).
[CrossRef]

Dieke, G. H.

Edlén, B.

V. Kaufmann and B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25 000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[CrossRef]

Engleman, R.

Freeman, G. H. C.

G. H. C. Freeman and W. H. King, “Cu ii spectral lines and their suitability as wavelength standards in the vacuum ultraviolet,” J. Phys. E 10, 894–897 (1977).
[CrossRef]

Harris, C. J.

A. P. Thorne, C. J. Harris, I. Wynne-Hones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet,” J. Phys. E 2054–60 (1987).
[CrossRef]

Johansson, S.

S. Johansson, “The spectrum and term system of Fe ii,” Phys. Scr. 18, 217–265 (1978).
[CrossRef]

Kaufmann, V.

V. Kaufmann and B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25 000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[CrossRef]

King, W. H.

G. H. C. Freeman and W. H. King, “Cu ii spectral lines and their suitability as wavelength standards in the vacuum ultraviolet,” J. Phys. E 10, 894–897 (1977).
[CrossRef]

Learner, R. C. M.

R. C. M. Learner and A. P. Thorne, “Wavelength calibration of Fourier transform emission spectra with application to Fe i,” J. Opt. Soc. Am. B 5, 2045–2059 (1988).
[CrossRef]

A. P. Thorne, C. J. Harris, I. Wynne-Hones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet,” J. Phys. E 2054–60 (1987).
[CrossRef]

Meggers, W. F.

R. W. Stanley and W. F. Meggers, “Wavelengths from iron-halide lamps,” J. Res. Natl. Bur. Stand. 58, 41–49 (1957).
[CrossRef]

Norlén, G.

G. Norlén, “Wavelengths and energy levels of Ar i and Ar ii based on new interferometric measurements in the region 3400–9800 Å,” Phys. Scr. 8, 249–269 (1973).
[CrossRef]

G. Norlén, University of Lund, Lund, Sweden, “Precise wavelengths in Fe ii (personal communication, 1985).

Stanley, R. W.

R. W. Stanley and W. F. Meggers, “Wavelengths from iron-halide lamps,” J. Res. Natl. Bur. Stand. 58, 41–49 (1957).
[CrossRef]

R. W. Stanley and G. H. Dieke, “Interferometric wavelengths of iron lines from a hollow cathode discharge,” J. Opt. Soc. Am. 45, 280–286 (1955).
[CrossRef]

Thorne, A. P.

R. C. M. Learner and A. P. Thorne, “Wavelength calibration of Fourier transform emission spectra with application to Fe i,” J. Opt. Soc. Am. B 5, 2045–2059 (1988).
[CrossRef]

A. P. Thorne, C. J. Harris, I. Wynne-Hones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet,” J. Phys. E 2054–60 (1987).
[CrossRef]

Wynne-Hones, I.

A. P. Thorne, C. J. Harris, I. Wynne-Hones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet,” J. Phys. E 2054–60 (1987).
[CrossRef]

Wynne-Jones, I.

I. Wynne-Jones, “Phase correcting an emission line spectrum,” Infrared Phys. 24, 273–275 (1984).
[CrossRef]

Infrared Phys. (1)

I. Wynne-Jones, “Phase correcting an emission line spectrum,” Infrared Phys. 24, 273–275 (1984).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Ref. Data (1)

V. Kaufmann and B. Edlén, “Reference wavelengths from atomic spectra in the range 15 Å to 25 000 Å,” J. Phys. Chem. Ref. Data 3, 825–895 (1974).
[CrossRef]

J. Phys. E (2)

G. H. C. Freeman and W. H. King, “Cu ii spectral lines and their suitability as wavelength standards in the vacuum ultraviolet,” J. Phys. E 10, 894–897 (1977).
[CrossRef]

A. P. Thorne, C. J. Harris, I. Wynne-Hones, R. C. M. Learner, and G. Cox, “A Fourier transform spectrometer for the vacuum ultraviolet,” J. Phys. E 2054–60 (1987).
[CrossRef]

J. Res. Natl. Bur. Stand (1)

H. M. Crosswhite, “The iron–neon hollow cathode spectrum,” J. Res. Natl. Bur. Stand,  79A, 17–53 (1975).
[CrossRef]

J. Res. Natl. Bur. Stand. (1)

R. W. Stanley and W. F. Meggers, “Wavelengths from iron-halide lamps,” J. Res. Natl. Bur. Stand. 58, 41–49 (1957).
[CrossRef]

Mikrochim. Acta (Wien) (1)

J. W. Brault, “High precision Fourier transform spectrometry,” Mikrochim. Acta (Wien) 1987 III, 215–227 (1988).

Osserv. Mem. Osserv. Astrofis. Arcetri (1)

J. W. Brault, “Solar Fourier transform spectroscopy,” Osserv. Mem. Osserv. Astrofis. Arcetri 106, 33–50 (1979).

Phys. Scr. (2)

G. Norlén, “Wavelengths and energy levels of Ar i and Ar ii based on new interferometric measurements in the region 3400–9800 Å,” Phys. Scr. 8, 249–269 (1973).
[CrossRef]

S. Johansson, “The spectrum and term system of Fe ii,” Phys. Scr. 18, 217–265 (1978).
[CrossRef]

Other (2)

J. W. Brault and M. C. Abrams, “decomp: a Fourier transform spectra decomposition program,” in High Resolution Fourier Transform Spectroscopy, Vol. 6 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 110–112.

G. Norlén, University of Lund, Lund, Sweden, “Precise wavelengths in Fe ii (personal communication, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Plot of the interferogram phase for the two-detector bridging spectrum. The step is due to the difference in phase of 160° between the visible and the UV detectors.

Fig. 2
Fig. 2

Fractional difference in wave numbers between two spectra that have different degrees of self-absorption plotted against the linewidths. The fractional difference is defined by δσ/σ = (σ1σ2)/σ, where σ1 and σ2 are the vacuum wave numbers from runs i6 and i74 of Table 2.

Fig. 3
Fig. 3

δσ/σ (see Fig. 2) between the reference spectrum k19 and the bridging spectrum i56, calibrated from k19, and this bridging spectrum i56 and the UV spectrum i6, calibrated from i56.

Fig. 4
Fig. 4

UV reproducibility, illustrated by plotting δσ/σ against σ (see Fig. 2) between runs i6 and i74 of Table 2. The standard deviation is 4 × 10−8 (1.6 mK at 40 000 cm−1).

Fig. 5
Fig. 5

δσ/σ plotted against σ (see Fig. 2) for the differences between the Fe i lines in spectrum i6 and the wave numbers of Kaufmann and Edlén.1 The standard deviation is 1.3 × 10−7.

Fig. 6
Fig. 6

δσ/σ plotted against σ (see Fig. 2) for the differences between the Fe ii lines in spectrum i6 and the wave numbers of Norlèn for Fe ii.11 The mean is 2.4 × 10−7, and the standard deviation 1.4 × 10−7.

Tables (5)

Tables Icon

Table 1 Principal Wavelength Standards Usable in the Region 175-300 nm

Tables Icon

Table 2 Operating Parameters and Calibration Constants

Tables Icon

Table 3 Recommended Fe i Wavelengths between 25 000 and 33 000 cm−1 for Unblended, Stable Lines Free of Self-Reversal and with an Observed Signal-to-Noise Ratio Greater than 250

Tables Icon

Table 4 Recommended Fe i Wavelengths between 33 000 and 52 000 cm−1 for Unblended, Stable Lines Free of Self-Reversal and with an Observed Signal-to-Noise Ratio Greater than 250 (σ < 45 000 cm−1) or 100 (σ > 45000 cm−1)

Tables Icon

Table 5 Recommended Fe n Wavelengths between 36000 and 55000 cm−1 for Unblended, Stable Lines Free of Self-Reversal and with Observed Signal-to-Noise Ratio Greater than 250 (σ < 45000 cm−1) or 100 (σ > 45000 cm−1)

Metrics