Abstract

A new method is studied for reading data that have been optically stored within the inhomogeneous spectral width of a material. The memory element is illuminated by a broad-bandwidth laser pulse. The signal that results from this excitation is analyzed by cross correlation with the field of a reference pulse, which is nothing but a delayed replica of the read pulse. Theoretical and experimental aspects of this process are discussed.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Szabo, “Frequency selective optical memory,” U.S. Patent No. 3,896,420 (July22, 1975).
  2. G. Castro, D. Haarer, R. Morton, R. M. McFarlane, H. P. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent No. 4,101,976 (July18, 1978).
  3. W. E. Moerner, ed., Persistent Spectral Hole-burning: Science and Applications (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  4. T. W. Mossberg, “Time-domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982).
    [CrossRef] [PubMed]
  5. A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
    [CrossRef]
  6. E. P. Ippen, C. V. Shank, “Techniques for measurement,” in Ultrashort Light Pulses: Picosecond Techniques and Applications, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 83–122.
    [CrossRef]
  7. M. A. Duguay, J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13, 178–180 (1968).
    [CrossRef]
  8. H. Mahr, M. D. Hirsch, “An optical up-conversion light gate with picosecond resolution,” Opt. Commun. 13, 96–99 (1975).
    [CrossRef]
  9. W. H. Hesselink, D. A. Wiersma, “Picosecond photon echoes detected by optical mixing,” Chem. Phys. Lett. 56, 227–230 (1978); “Picosecond dephasing and relaxation in vibronic states of molecules in the condensed phase,” Chem. Phys. Lett. 65, 300–303 (1979).
    [CrossRef]
  10. J. E. Rothenberg, D. Grischkowsky, A. C. Balant, “Observation of the formation of the 0π pulse,” Phys. Rev. Lett. 53, 552–555 (1984).
    [CrossRef]
  11. A. Rebane, J. Aaviksoo, J. Kuhl, “Storage and time reversal of femtosecond light signals via persistent spectral hole burning holography,” Appl. Phys. Lett. 54, 93–95 (1989).
    [CrossRef]
  12. D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J.-L. Oudar, J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the picosecond time scale in the 1.16 μ m spectral range,” Appl. Phys. Lett. 49, 761 (1986).
    [CrossRef]
  13. D. Hulin, A. Antonetti, M. Joffre, A. Migus, A. Mysyrowicz, N. Peyghambarian, H. M. Gibbs, “Subpicosecond all-optical logic gate: an application of the optical Stark effect,” Rev. Phys. Appl. 22, 1269–1271 (1987).
    [CrossRef]
  14. N. Morita, K. Torizuka, T. Yajima, “Coherent propagation of incoherent light,” J. Opt. Soc. Am. B 3, 548–553 (1986).
    [CrossRef]
  15. H. Nakatsuka, Y. Katashima, K. Inouye, “Incoherent light gated optical Kerr shutter for fluorescence lifetime measurement,” Opt. Commun. 69, 169–172 (1988).
    [CrossRef]
  16. S. Saikan, T. Kishida, A. Imaoka, K. Uchikawa, A. Furusawa, H. Oosawa, “Optical memory based on heterodyne-detected accumulated photon echoes,” Opt. Lett. 14, 841–843 (1989).
    [CrossRef] [PubMed]
  17. A. Déarre, J.-C. Keller, J.-L. Le Gouët, A. Richard, P. Tchénio, “An amplitude correlator for broadband laser source characterization,” Opt. Commun. 73, 309–313 (1989).
    [CrossRef]
  18. H. J. Eichler, U. Klein, D. Langhans, “Coherence time measurement of picosecond pulses by a light-induced grating method,” Appl. Phys. 21, 215–219 (1980).
    [CrossRef]
  19. A. S. L. Gomes, L. H. Acioli, Cid de Araújo, J. R. Rios Leite, “Dispersion of coherence spikes of incoherent broad band dye lasers,” Opt. Commun. 73, 475–478 (1989).
    [CrossRef]
  20. M. D. Havey, L. C. Balling, J. J. Wright, “Direct measurements of excited-state lifetimes in Mg, Ca, and Sr,” J. Opt. Soc. Am. 67, 488–491 (1977).
    [CrossRef]
  21. B. Blümich, “Two-dimensional interferometry,” Rev. Sci. Instrum. 58, 911–919 (1987).
    [CrossRef]

1989 (4)

A. Rebane, J. Aaviksoo, J. Kuhl, “Storage and time reversal of femtosecond light signals via persistent spectral hole burning holography,” Appl. Phys. Lett. 54, 93–95 (1989).
[CrossRef]

A. S. L. Gomes, L. H. Acioli, Cid de Araújo, J. R. Rios Leite, “Dispersion of coherence spikes of incoherent broad band dye lasers,” Opt. Commun. 73, 475–478 (1989).
[CrossRef]

A. Déarre, J.-C. Keller, J.-L. Le Gouët, A. Richard, P. Tchénio, “An amplitude correlator for broadband laser source characterization,” Opt. Commun. 73, 309–313 (1989).
[CrossRef]

S. Saikan, T. Kishida, A. Imaoka, K. Uchikawa, A. Furusawa, H. Oosawa, “Optical memory based on heterodyne-detected accumulated photon echoes,” Opt. Lett. 14, 841–843 (1989).
[CrossRef] [PubMed]

1988 (1)

H. Nakatsuka, Y. Katashima, K. Inouye, “Incoherent light gated optical Kerr shutter for fluorescence lifetime measurement,” Opt. Commun. 69, 169–172 (1988).
[CrossRef]

1987 (2)

B. Blümich, “Two-dimensional interferometry,” Rev. Sci. Instrum. 58, 911–919 (1987).
[CrossRef]

D. Hulin, A. Antonetti, M. Joffre, A. Migus, A. Mysyrowicz, N. Peyghambarian, H. M. Gibbs, “Subpicosecond all-optical logic gate: an application of the optical Stark effect,” Rev. Phys. Appl. 22, 1269–1271 (1987).
[CrossRef]

1986 (2)

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J.-L. Oudar, J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the picosecond time scale in the 1.16 μ m spectral range,” Appl. Phys. Lett. 49, 761 (1986).
[CrossRef]

N. Morita, K. Torizuka, T. Yajima, “Coherent propagation of incoherent light,” J. Opt. Soc. Am. B 3, 548–553 (1986).
[CrossRef]

1984 (1)

J. E. Rothenberg, D. Grischkowsky, A. C. Balant, “Observation of the formation of the 0π pulse,” Phys. Rev. Lett. 53, 552–555 (1984).
[CrossRef]

1983 (1)

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

1982 (1)

1980 (1)

H. J. Eichler, U. Klein, D. Langhans, “Coherence time measurement of picosecond pulses by a light-induced grating method,” Appl. Phys. 21, 215–219 (1980).
[CrossRef]

1978 (1)

W. H. Hesselink, D. A. Wiersma, “Picosecond photon echoes detected by optical mixing,” Chem. Phys. Lett. 56, 227–230 (1978); “Picosecond dephasing and relaxation in vibronic states of molecules in the condensed phase,” Chem. Phys. Lett. 65, 300–303 (1979).
[CrossRef]

1977 (1)

1975 (1)

H. Mahr, M. D. Hirsch, “An optical up-conversion light gate with picosecond resolution,” Opt. Commun. 13, 96–99 (1975).
[CrossRef]

1968 (1)

M. A. Duguay, J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13, 178–180 (1968).
[CrossRef]

Aaviksoo, J.

A. Rebane, J. Aaviksoo, J. Kuhl, “Storage and time reversal of femtosecond light signals via persistent spectral hole burning holography,” Appl. Phys. Lett. 54, 93–95 (1989).
[CrossRef]

Acioli, L. H.

A. S. L. Gomes, L. H. Acioli, Cid de Araújo, J. R. Rios Leite, “Dispersion of coherence spikes of incoherent broad band dye lasers,” Opt. Commun. 73, 475–478 (1989).
[CrossRef]

Anijalg, A.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Antonetti, A.

D. Hulin, A. Antonetti, M. Joffre, A. Migus, A. Mysyrowicz, N. Peyghambarian, H. M. Gibbs, “Subpicosecond all-optical logic gate: an application of the optical Stark effect,” Rev. Phys. Appl. 22, 1269–1271 (1987).
[CrossRef]

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J.-L. Oudar, J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the picosecond time scale in the 1.16 μ m spectral range,” Appl. Phys. Lett. 49, 761 (1986).
[CrossRef]

Badan, J.

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J.-L. Oudar, J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the picosecond time scale in the 1.16 μ m spectral range,” Appl. Phys. Lett. 49, 761 (1986).
[CrossRef]

Balant, A. C.

J. E. Rothenberg, D. Grischkowsky, A. C. Balant, “Observation of the formation of the 0π pulse,” Phys. Rev. Lett. 53, 552–555 (1984).
[CrossRef]

Balling, L. C.

Blümich, B.

B. Blümich, “Two-dimensional interferometry,” Rev. Sci. Instrum. 58, 911–919 (1987).
[CrossRef]

Castro, G.

G. Castro, D. Haarer, R. Morton, R. M. McFarlane, H. P. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent No. 4,101,976 (July18, 1978).

de Araújo, Cid

A. S. L. Gomes, L. H. Acioli, Cid de Araújo, J. R. Rios Leite, “Dispersion of coherence spikes of incoherent broad band dye lasers,” Opt. Commun. 73, 475–478 (1989).
[CrossRef]

Déarre, A.

A. Déarre, J.-C. Keller, J.-L. Le Gouët, A. Richard, P. Tchénio, “An amplitude correlator for broadband laser source characterization,” Opt. Commun. 73, 309–313 (1989).
[CrossRef]

Duguay, M. A.

M. A. Duguay, J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13, 178–180 (1968).
[CrossRef]

Eichler, H. J.

H. J. Eichler, U. Klein, D. Langhans, “Coherence time measurement of picosecond pulses by a light-induced grating method,” Appl. Phys. 21, 215–219 (1980).
[CrossRef]

Furusawa, A.

Gibbs, H. M.

D. Hulin, A. Antonetti, M. Joffre, A. Migus, A. Mysyrowicz, N. Peyghambarian, H. M. Gibbs, “Subpicosecond all-optical logic gate: an application of the optical Stark effect,” Rev. Phys. Appl. 22, 1269–1271 (1987).
[CrossRef]

Gomes, A. S. L.

A. S. L. Gomes, L. H. Acioli, Cid de Araújo, J. R. Rios Leite, “Dispersion of coherence spikes of incoherent broad band dye lasers,” Opt. Commun. 73, 475–478 (1989).
[CrossRef]

Grischkowsky, D.

J. E. Rothenberg, D. Grischkowsky, A. C. Balant, “Observation of the formation of the 0π pulse,” Phys. Rev. Lett. 53, 552–555 (1984).
[CrossRef]

Haarer, D.

G. Castro, D. Haarer, R. Morton, R. M. McFarlane, H. P. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent No. 4,101,976 (July18, 1978).

Hansen, J. W.

M. A. Duguay, J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13, 178–180 (1968).
[CrossRef]

Havey, M. D.

Hesselink, W. H.

W. H. Hesselink, D. A. Wiersma, “Picosecond photon echoes detected by optical mixing,” Chem. Phys. Lett. 56, 227–230 (1978); “Picosecond dephasing and relaxation in vibronic states of molecules in the condensed phase,” Chem. Phys. Lett. 65, 300–303 (1979).
[CrossRef]

Hirsch, M. D.

H. Mahr, M. D. Hirsch, “An optical up-conversion light gate with picosecond resolution,” Opt. Commun. 13, 96–99 (1975).
[CrossRef]

Hulin, D.

D. Hulin, A. Antonetti, M. Joffre, A. Migus, A. Mysyrowicz, N. Peyghambarian, H. M. Gibbs, “Subpicosecond all-optical logic gate: an application of the optical Stark effect,” Rev. Phys. Appl. 22, 1269–1271 (1987).
[CrossRef]

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J.-L. Oudar, J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the picosecond time scale in the 1.16 μ m spectral range,” Appl. Phys. Lett. 49, 761 (1986).
[CrossRef]

Imaoka, A.

Inouye, K.

H. Nakatsuka, Y. Katashima, K. Inouye, “Incoherent light gated optical Kerr shutter for fluorescence lifetime measurement,” Opt. Commun. 69, 169–172 (1988).
[CrossRef]

Ippen, E. P.

E. P. Ippen, C. V. Shank, “Techniques for measurement,” in Ultrashort Light Pulses: Picosecond Techniques and Applications, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 83–122.
[CrossRef]

Joffre, M.

D. Hulin, A. Antonetti, M. Joffre, A. Migus, A. Mysyrowicz, N. Peyghambarian, H. M. Gibbs, “Subpicosecond all-optical logic gate: an application of the optical Stark effect,” Rev. Phys. Appl. 22, 1269–1271 (1987).
[CrossRef]

Kaarli, R.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Katashima, Y.

H. Nakatsuka, Y. Katashima, K. Inouye, “Incoherent light gated optical Kerr shutter for fluorescence lifetime measurement,” Opt. Commun. 69, 169–172 (1988).
[CrossRef]

Keller, J.-C.

A. Déarre, J.-C. Keller, J.-L. Le Gouët, A. Richard, P. Tchénio, “An amplitude correlator for broadband laser source characterization,” Opt. Commun. 73, 309–313 (1989).
[CrossRef]

Kishida, T.

Klein, U.

H. J. Eichler, U. Klein, D. Langhans, “Coherence time measurement of picosecond pulses by a light-induced grating method,” Appl. Phys. 21, 215–219 (1980).
[CrossRef]

Kuhl, J.

A. Rebane, J. Aaviksoo, J. Kuhl, “Storage and time reversal of femtosecond light signals via persistent spectral hole burning holography,” Appl. Phys. Lett. 54, 93–95 (1989).
[CrossRef]

Langhans, D.

H. J. Eichler, U. Klein, D. Langhans, “Coherence time measurement of picosecond pulses by a light-induced grating method,” Appl. Phys. 21, 215–219 (1980).
[CrossRef]

Le Gouët, J.-L.

A. Déarre, J.-C. Keller, J.-L. Le Gouët, A. Richard, P. Tchénio, “An amplitude correlator for broadband laser source characterization,” Opt. Commun. 73, 309–313 (1989).
[CrossRef]

Ledoux, I.

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J.-L. Oudar, J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the picosecond time scale in the 1.16 μ m spectral range,” Appl. Phys. Lett. 49, 761 (1986).
[CrossRef]

Mahr, H.

H. Mahr, M. D. Hirsch, “An optical up-conversion light gate with picosecond resolution,” Opt. Commun. 13, 96–99 (1975).
[CrossRef]

McFarlane, R. M.

G. Castro, D. Haarer, R. Morton, R. M. McFarlane, H. P. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent No. 4,101,976 (July18, 1978).

Migus, A.

D. Hulin, A. Antonetti, M. Joffre, A. Migus, A. Mysyrowicz, N. Peyghambarian, H. M. Gibbs, “Subpicosecond all-optical logic gate: an application of the optical Stark effect,” Rev. Phys. Appl. 22, 1269–1271 (1987).
[CrossRef]

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J.-L. Oudar, J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the picosecond time scale in the 1.16 μ m spectral range,” Appl. Phys. Lett. 49, 761 (1986).
[CrossRef]

Morita, N.

Morton, R.

G. Castro, D. Haarer, R. Morton, R. M. McFarlane, H. P. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent No. 4,101,976 (July18, 1978).

Mossberg, T. W.

Mysyrowicz, A.

D. Hulin, A. Antonetti, M. Joffre, A. Migus, A. Mysyrowicz, N. Peyghambarian, H. M. Gibbs, “Subpicosecond all-optical logic gate: an application of the optical Stark effect,” Rev. Phys. Appl. 22, 1269–1271 (1987).
[CrossRef]

Nakatsuka, H.

H. Nakatsuka, Y. Katashima, K. Inouye, “Incoherent light gated optical Kerr shutter for fluorescence lifetime measurement,” Opt. Commun. 69, 169–172 (1988).
[CrossRef]

Oosawa, H.

Oudar, J.-L.

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J.-L. Oudar, J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the picosecond time scale in the 1.16 μ m spectral range,” Appl. Phys. Lett. 49, 761 (1986).
[CrossRef]

Peyghambarian, N.

D. Hulin, A. Antonetti, M. Joffre, A. Migus, A. Mysyrowicz, N. Peyghambarian, H. M. Gibbs, “Subpicosecond all-optical logic gate: an application of the optical Stark effect,” Rev. Phys. Appl. 22, 1269–1271 (1987).
[CrossRef]

Rebane, A.

A. Rebane, J. Aaviksoo, J. Kuhl, “Storage and time reversal of femtosecond light signals via persistent spectral hole burning holography,” Appl. Phys. Lett. 54, 93–95 (1989).
[CrossRef]

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Richard, A.

A. Déarre, J.-C. Keller, J.-L. Le Gouët, A. Richard, P. Tchénio, “An amplitude correlator for broadband laser source characterization,” Opt. Commun. 73, 309–313 (1989).
[CrossRef]

Rios Leite, J. R.

A. S. L. Gomes, L. H. Acioli, Cid de Araújo, J. R. Rios Leite, “Dispersion of coherence spikes of incoherent broad band dye lasers,” Opt. Commun. 73, 475–478 (1989).
[CrossRef]

Rothenberg, J. E.

J. E. Rothenberg, D. Grischkowsky, A. C. Balant, “Observation of the formation of the 0π pulse,” Phys. Rev. Lett. 53, 552–555 (1984).
[CrossRef]

Saari, P.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Saikan, S.

Shank, C. V.

E. P. Ippen, C. V. Shank, “Techniques for measurement,” in Ultrashort Light Pulses: Picosecond Techniques and Applications, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 83–122.
[CrossRef]

Szabo, A.

A. Szabo, “Frequency selective optical memory,” U.S. Patent No. 3,896,420 (July22, 1975).

Tchénio, P.

A. Déarre, J.-C. Keller, J.-L. Le Gouët, A. Richard, P. Tchénio, “An amplitude correlator for broadband laser source characterization,” Opt. Commun. 73, 309–313 (1989).
[CrossRef]

Timpmann, K.

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

Torizuka, K.

Trommsdorff, H. P.

G. Castro, D. Haarer, R. Morton, R. M. McFarlane, H. P. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent No. 4,101,976 (July18, 1978).

Uchikawa, K.

Wiersma, D. A.

W. H. Hesselink, D. A. Wiersma, “Picosecond photon echoes detected by optical mixing,” Chem. Phys. Lett. 56, 227–230 (1978); “Picosecond dephasing and relaxation in vibronic states of molecules in the condensed phase,” Chem. Phys. Lett. 65, 300–303 (1979).
[CrossRef]

Wright, J. J.

Yajima, T.

Zyss, J.

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J.-L. Oudar, J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the picosecond time scale in the 1.16 μ m spectral range,” Appl. Phys. Lett. 49, 761 (1986).
[CrossRef]

Appl. Phys. (1)

H. J. Eichler, U. Klein, D. Langhans, “Coherence time measurement of picosecond pulses by a light-induced grating method,” Appl. Phys. 21, 215–219 (1980).
[CrossRef]

Appl. Phys. Lett. (3)

M. A. Duguay, J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13, 178–180 (1968).
[CrossRef]

A. Rebane, J. Aaviksoo, J. Kuhl, “Storage and time reversal of femtosecond light signals via persistent spectral hole burning holography,” Appl. Phys. Lett. 54, 93–95 (1989).
[CrossRef]

D. Hulin, A. Migus, A. Antonetti, I. Ledoux, J. Badan, J.-L. Oudar, J. Zyss, “Parametric amplification sampling spectroscopy of luminescence at the picosecond time scale in the 1.16 μ m spectral range,” Appl. Phys. Lett. 49, 761 (1986).
[CrossRef]

Chem. Phys. Lett. (1)

W. H. Hesselink, D. A. Wiersma, “Picosecond photon echoes detected by optical mixing,” Chem. Phys. Lett. 56, 227–230 (1978); “Picosecond dephasing and relaxation in vibronic states of molecules in the condensed phase,” Chem. Phys. Lett. 65, 300–303 (1979).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (5)

A. S. L. Gomes, L. H. Acioli, Cid de Araújo, J. R. Rios Leite, “Dispersion of coherence spikes of incoherent broad band dye lasers,” Opt. Commun. 73, 475–478 (1989).
[CrossRef]

H. Nakatsuka, Y. Katashima, K. Inouye, “Incoherent light gated optical Kerr shutter for fluorescence lifetime measurement,” Opt. Commun. 69, 169–172 (1988).
[CrossRef]

H. Mahr, M. D. Hirsch, “An optical up-conversion light gate with picosecond resolution,” Opt. Commun. 13, 96–99 (1975).
[CrossRef]

A. Rebane, R. Kaarli, P. Saari, A. Anijalg, K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun. 47, 173–176 (1983).
[CrossRef]

A. Déarre, J.-C. Keller, J.-L. Le Gouët, A. Richard, P. Tchénio, “An amplitude correlator for broadband laser source characterization,” Opt. Commun. 73, 309–313 (1989).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

J. E. Rothenberg, D. Grischkowsky, A. C. Balant, “Observation of the formation of the 0π pulse,” Phys. Rev. Lett. 53, 552–555 (1984).
[CrossRef]

Rev. Phys. Appl. (1)

D. Hulin, A. Antonetti, M. Joffre, A. Migus, A. Mysyrowicz, N. Peyghambarian, H. M. Gibbs, “Subpicosecond all-optical logic gate: an application of the optical Stark effect,” Rev. Phys. Appl. 22, 1269–1271 (1987).
[CrossRef]

Rev. Sci. Instrum. (1)

B. Blümich, “Two-dimensional interferometry,” Rev. Sci. Instrum. 58, 911–919 (1987).
[CrossRef]

Other (4)

A. Szabo, “Frequency selective optical memory,” U.S. Patent No. 3,896,420 (July22, 1975).

G. Castro, D. Haarer, R. Morton, R. M. McFarlane, H. P. Trommsdorff, “Frequency selective optical data storage system,” U.S. Patent No. 4,101,976 (July18, 1978).

W. E. Moerner, ed., Persistent Spectral Hole-burning: Science and Applications (Springer-Verlag, Berlin, 1988).
[CrossRef]

E. P. Ippen, C. V. Shank, “Techniques for measurement,” in Ultrashort Light Pulses: Picosecond Techniques and Applications, S. L. Shapiro, ed. (Springer-Verlag, Berlin, 1977), pp. 83–122.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Laser beam configuration for data storage within the inhomogeneous width of an absorption band. The write pulse and the data train propagate along the directions of the wave vectors k1 and k2, respectively.

Fig. 2
Fig. 2

Generation of the slowly varying background in 〈|C(T)|2〉. Each elementary component in the read and reference pulses is indicated by a dotted rectangle with width τc. A solid rectangle represents the component Rm, which causes emission of a signal with delay tp. The signal width is ΔI−1τc. The (ΔIτc)−1 elementary components in the reference pulse, which reach the detector at the same time as the signal, are also represented by solid rectangles. All of them interfere with the signal.

Fig. 3
Fig. 3

Generation of the correlation peaks in 〈|C(T)|2〉. The twin of Rm in the reference pulse is represented by a solid rectangle. It can interfere with the elementary signal induced by Rm if |Ttp| is smaller than the signal duration ΔI−1.

Fig. 4
Fig. 4

Delay of the reference pulse is varied while its correlation function with the read pulse is recorded. This permits one to determine the position of zero delay between these two pulses (a). Then the signal emitted by the sample is forwarded to the correlator in place of the read pulse. The corresponding correlation with the reference is recorded as a function of the delay of the reference pulse (b). A theoretical profile is displayed in (c).

Fig. 5
Fig. 5

Cross-correlation function between the write pulse and the data train. This recording is obtained as a function of the delay of the write pulse with respect to its position in the actual storage configuration.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

E S ( r , t ) = E S ( t ) exp [ i ( ω 0 t - k S · r + ϕ S ) ] + c . c .
E r ( r , t ) = E R ( t - T ) exp { i [ ω 0 t - k r · r + ϕ r ( T ) ] } + c . c . ,
d t [ E S ( r , t ) + E r ( r , t ) ] 2 .
d t E S ( t ) E R * ( t - T ) exp { i [ ( k r - k S ) · r + ϕ S - ϕ r ( T ) ] } + c . c .
C ( T ) = d t E S ( t ) E R * ( t - T ) / d t | E R ( t ) | 2 .
n ( ω ) = n 0 ( ω ) p = 1 N c p exp [ i t p ( ω - ω 0 ) ] + c . c . ,
E S ( t ) = 0 d τ r ( τ ) E R ( t - τ ) ,
r ( τ ) = d ω n ( ω ) exp { - [ i ( ω - ω 0 ) + 1 / T 2 ] τ } .
r ( τ ) = p = 1 N c p n ^ 0 ( τ - t p ) exp ( - τ / T 2 ) ,
f ^ ( τ ) = d ω f ( ω ) exp [ - i ( ω - ω 0 ) τ ] .
E S ( t ) = p = 1 N c p n ^ 0 ( t - t 0 - t p ) 0 d τ E R ( t - τ ) exp ( - t p / T 2 ) .
E S ( t ) 2 = p = 1 N c p 2 n ^ 0 ( t - t 0 - t p ) 2 × | 0 d τ E R ( t - τ ) | 2 exp ( - 2 t p / T 2 ) .
h ( t ) = 0 , h ( t ) h ( t ) = 0 , h ( t ) h * ( t ) = g ( t - t ) , g ( 0 ) = 1 ,             0 g ( τ ) d τ = τ c ;
τ c Δ I - 1 τ L / N ,
t p - t p - 1 τ L .
E S ( t ) 2 = 4 π τ c d ω [ n 0 ( ω ) ] 2 p = 1 N c p 2 × [ ɛ ( t - t p ) ] 2 exp ( - 2 t p / T 2 ) .
h ( t 1 ) h ( t n ) h * ( t n + 1 ) h * ( t 2 n ) = p j = 1 n h ( t j ) h * ( t p ( n + j ) )
C ( T ) 2 = 4 τ c 2 p = 1 N c p 2 [ n ^ 0 ( T - t p ) 2 exp ( - 2 T T 2 ) + 2 π τ L ( T , t p ) N ^ ( 0 ) exp ( - 2 t p T 2 ) ] ,
τ L ( T , t p ) = [ d t ɛ 2 ( t ) ] 2 d t ɛ 2 ( t - t p ) ɛ 2 ( t - T )
C ( T ) 2 = 4 τ c 2 p = 1 N c p 2 { exp [ - Δ I 2 ( T - t p ) 2 8 ln 2 - 2 T T 2 ] + 4 ln 2 Δ I τ L exp [ ( - 2 t p T 2 ) - 2 ln 2 ( T - t p τ L ) 2 ] } .
E D ( t ) = p = 1 N b p E ( t - t p ) .
E T ( t ) = [ E ( t ) exp ( - i k 1 · r ) + E D ( t ) exp ( - i k 2 · r ) ] exp ( i ω 0 t ) + c . c .
d t E T ( t ) E T * ( t - τ ) = [ d t E ( t ) E * ( t - τ ) + d t E D ( t ) E D * ( t - τ ) + d t E D ( t ) E * ( t - τ ) exp ( - i K · r ) + d t E ( t ) E D * ( t - τ ) exp ( i K · r ) ] exp ( i ω 0 τ ) ,
g ^ ( ω - ω 0 ) d t E ( t ) 2 × p = 1 N b p exp { - i [ ( ω - ω 0 ) t p + K · r ] } + c . c .

Metrics