Abstract

Expansion of the orientational distribution function f(θ, t) of molecular dipoles in terms of Legendre polynomials with spherical modified Bessel functions in(μE/kT) as coefficients yields an analytic relation between the steady-state birefringence Δnz(ω) and the electro-optic coefficient χxxz(2)(-ω;ω,0) for a poled nonlinear optical system. A rotational diffusion equation, with the diffusion constant D, for the distribution function describing the onset and the decay of the induced optical and electro-optic properties is solved, with the help of the recurrence relation for spherical modified Bessel functions. It is found that the onset of birefringence involves at least two time constants, with rise times of 1/2D and 1/6D, while the onset of the electro-optic effect is dominated by the rise time of 1/2D. After removal of the dc poling field, the birefringence and the electro-optic effect are found to relax in time with different decay time constants, 1/6D and 1/2D, respectively. This is due to the difference in the tensor rank describing the birefringence and the electro-optic effect.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (67)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription