Abstract

We have used the fluorescence-dip technique to obtain double-resonance spectra of transition-metal atoms produced in a rf glow-discharge sputtering machine. Rydberg spectra of the neutral elements Ti, V, Fe, Co, and Ni have been analyzed to yield ionization potentials accurate to 1 cm−1, completing the table of values for the iron period (K through Zn). The 63 737-cm−1 value obtained for Fe agrees with a recently reported result, and new ionization potentials for Ti, V, Co, and Ni are 55 073, 54 413, 63 565 and 61 619 cm−1, respectively. Quantum defects for nd and ns series were obtained. Series converging to some excited ion core levels do not show detectable sd mixing, which would provide a direct ionization channel and lead to the asymmetric line shapes that are characteristic of autoionization. Fano q parameters were determined for states autoionizing without a change in core configuration. Resolved spectra of low-lying Rydberg states display a complicated level structure not observed in studies of alkali or rare-gas atoms.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).
  2. S. Johansson, “On regularities in complex spectra of iron group elements and their dominance in stellar spectra,” Phys. Scr. 36, 99 (1987).
    [Crossref]
  3. C. M. Brown, M. L. Ginter, S. Johansson, and S. G. Tilford, “Absorption spectra of Fe iin the 1550–3215-Å region,” J. Opt. Soc. Am. B 5, 2125 (1988).
    [Crossref]
  4. E. F. Worden, B. Comaskey, J. Densberger, J. Christensen, J. M. McAfee, and J. A. Paisner, “The ionization potential of neutral iron, Fe i, by multistep laser spectroscopy,” J. Opt. Soc. Am. B 1, 314 (1984).
    [Crossref]
  5. C. L. Callender, P. A. Hackett, and D. M. Rayner, “First-ionization potential of ruthenium, rhodium, and palladium by double-resonance ionization spectroscopy,” J. Opt. Soc. Am. B 5, 614 (1988).
    [Crossref]
  6. C. L. Callender, P. A. Hackett, and D. M. Rayner, “First ionization potential of hafnium by double-resonance field-ionization spectroscopy,” J. Opt. Soc. Am. B 5, 1341 (1988).
    [Crossref]
  7. D. M. Rayner, S. A. Mitchell, O. L. Bourne, and P. A. Hackett, “First-ionization potential of niobium and molybdenum by double-resonance, field-ionization spectroscopy,” J. Opt. Soc. Am. B 4, 900 (1987).
    [Crossref]
  8. P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series,” J. Chem Phys. 85, 3194 (1986).
    [Crossref]
  9. R. Georgiadis and P. B. Armentrout, “Multiphoton ionization of VOCl3,” Chem Phys. Lett. 137, 144 (1987).
    [Crossref]
  10. B. Samoriski and J. Chaiken, “Observation and assignment of 7D, 7P°, and 7S Rydberg series of molybdenum atoms by multiphoton dissociation and ionization spectroscopy of organometallic molecules,” Phys. Rev. A 38, 3498 (1988).
    [Crossref] [PubMed]
  11. R. H. Page, C. S. Gudeman, and V. J. Novotny, “Glow-discharge optical spectroscopy as a diagnostic of sputtered Permalloy film composition and saturation magnetostriction,” J. Appl. Phys. 65, 3586 (1989).
    [Crossref]
  12. R. H. Page, C. S. Gudeman, and M. V. Mitchell, “Radiofrequency sputter source for laser-induced fluorescence studies of transition metal atoms and dimers,” Chem. Phys. 140, 65 (1990).
    [Crossref]
  13. R. H. Page and C. S. Gudeman, “Rotationally resolved dicopper laser-induced fluorescence spectra, the long-awaited Π state, and atomic-state parentages of known molecular states,” submitted to J. Chem. Phys.
  14. D. S. King, P. Schenck, K. Smyth, and J. C. Travis, “Direct calibration of laser wavelength and bandwidth using the optogalvanic effect in hollow cathode lamps,” Appl. Opt. 16, 2617 (1977).
    [Crossref] [PubMed]
  15. J. R. Nestor, “Optogalvanic spectra of neon and argon in glow discharge lamps,” Appl. Opt. 21, 4154 (1982).
    [Crossref] [PubMed]
  16. A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions, Vol. 31 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1985).
    [Crossref]
  17. J. Berkowitz, Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic, New York, 1979).
  18. W. L. Weise, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities, Nat. Stand. Ref. Data Ser. Natl. Bur. Stand22, (1969), Vol. II.
  19. J. R. Fuhr, G. A. Martin, W. L. Weise, and S. M. Younger, “Atomic transition probabilities for iron, cobalt, and nickel (a critical data compilation of allowed lines),” J. Phys. Chem. Ref. Data 10, 305 (1981).
    [Crossref]
  20. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. Press, London, 1967).
  21. D. R. Bates and A. Damgaard, “The calculation of the absolute strengths of spectral lines,” Philos. Trans. R. Soc. London Ser. A 242, 101 (1949).
    [Crossref]
  22. K. T. Lu and U. Fano, “Graphic analysis of perturbed Rydberg series,” Phys. Rev. A 2, 81 (1970).
    [Crossref]
  23. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957).
    [Crossref]
  24. M. L. Zimmermann, M. G. Littman, M. M. Kash, and D. Kleppner, “Stark structure of the Rydberg states of alkali-metal atoms,” Phys. Rev. A 20, 2251 (1979).
    [Crossref]
  25. W. E. Ernst, T. P. Softley, and R. N. Zare, “Stark-effect studies in xenon autoionizing Rydberg states using a tunable extreme-ultraviolet laser source,” Phys. Rev. A 37, 4172 (1988).
    [Crossref] [PubMed]
  26. B. Chapman, Glow Discharge Processes (Wiley-Interscience, New York, 1980).
  27. J. R. Shoemaker, B. N. Ganguly, and A. Garscadden, “Stark spectroscopic measurement of spatially resolved electric field and electric field gradients in a glow discharge,” Appl. Phys. Lett. 52, 2019 (1988).
    [Crossref]
  28. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), p. 341.
  29. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).
  30. G. C. Bjorklund, R. R. Freeman, and R. H. Storz, “Selective excitation of Rydberg levels in atomic hydrogen by three photon absorption,” Opt. Commun. 31, 47 (1979).
    [Crossref]
  31. H. N. Russell, R. B. King, and C. E. Moore, “The arc spectrum of cobalt,” Phys. Rev. 58, 407 (1940).
    [Crossref]
  32. U. Fano, “Effects of configuration interactions of intensites and phase shifts,” Phys. Rev. 124, 1866 (1961).
    [Crossref]
  33. C. M. Brown and M. L. Ginter, “Absorption spectrum of Mn ibetween 1305 and 2040 Å,” J. Opt. Soc. Am. 68, 1541 (1978).
    [Crossref]
  34. J. E. Sohl, Y. Zhu, and R. D. Knight, “Two-color laser photoionization spectroscopy of Ti i: multichannel quantum defect theory analysis and a new ionization potential,” J. Opt. Soc. Am. B 7, 9 (1990).
    [Crossref]

1990 (2)

R. H. Page, C. S. Gudeman, and M. V. Mitchell, “Radiofrequency sputter source for laser-induced fluorescence studies of transition metal atoms and dimers,” Chem. Phys. 140, 65 (1990).
[Crossref]

J. E. Sohl, Y. Zhu, and R. D. Knight, “Two-color laser photoionization spectroscopy of Ti i: multichannel quantum defect theory analysis and a new ionization potential,” J. Opt. Soc. Am. B 7, 9 (1990).
[Crossref]

1989 (1)

R. H. Page, C. S. Gudeman, and V. J. Novotny, “Glow-discharge optical spectroscopy as a diagnostic of sputtered Permalloy film composition and saturation magnetostriction,” J. Appl. Phys. 65, 3586 (1989).
[Crossref]

1988 (6)

B. Samoriski and J. Chaiken, “Observation and assignment of 7D, 7P°, and 7S Rydberg series of molybdenum atoms by multiphoton dissociation and ionization spectroscopy of organometallic molecules,” Phys. Rev. A 38, 3498 (1988).
[Crossref] [PubMed]

C. M. Brown, M. L. Ginter, S. Johansson, and S. G. Tilford, “Absorption spectra of Fe iin the 1550–3215-Å region,” J. Opt. Soc. Am. B 5, 2125 (1988).
[Crossref]

C. L. Callender, P. A. Hackett, and D. M. Rayner, “First-ionization potential of ruthenium, rhodium, and palladium by double-resonance ionization spectroscopy,” J. Opt. Soc. Am. B 5, 614 (1988).
[Crossref]

C. L. Callender, P. A. Hackett, and D. M. Rayner, “First ionization potential of hafnium by double-resonance field-ionization spectroscopy,” J. Opt. Soc. Am. B 5, 1341 (1988).
[Crossref]

W. E. Ernst, T. P. Softley, and R. N. Zare, “Stark-effect studies in xenon autoionizing Rydberg states using a tunable extreme-ultraviolet laser source,” Phys. Rev. A 37, 4172 (1988).
[Crossref] [PubMed]

J. R. Shoemaker, B. N. Ganguly, and A. Garscadden, “Stark spectroscopic measurement of spatially resolved electric field and electric field gradients in a glow discharge,” Appl. Phys. Lett. 52, 2019 (1988).
[Crossref]

1987 (3)

D. M. Rayner, S. A. Mitchell, O. L. Bourne, and P. A. Hackett, “First-ionization potential of niobium and molybdenum by double-resonance, field-ionization spectroscopy,” J. Opt. Soc. Am. B 4, 900 (1987).
[Crossref]

S. Johansson, “On regularities in complex spectra of iron group elements and their dominance in stellar spectra,” Phys. Scr. 36, 99 (1987).
[Crossref]

R. Georgiadis and P. B. Armentrout, “Multiphoton ionization of VOCl3,” Chem Phys. Lett. 137, 144 (1987).
[Crossref]

1986 (1)

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series,” J. Chem Phys. 85, 3194 (1986).
[Crossref]

1985 (1)

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

1984 (1)

1982 (1)

1981 (1)

J. R. Fuhr, G. A. Martin, W. L. Weise, and S. M. Younger, “Atomic transition probabilities for iron, cobalt, and nickel (a critical data compilation of allowed lines),” J. Phys. Chem. Ref. Data 10, 305 (1981).
[Crossref]

1979 (2)

G. C. Bjorklund, R. R. Freeman, and R. H. Storz, “Selective excitation of Rydberg levels in atomic hydrogen by three photon absorption,” Opt. Commun. 31, 47 (1979).
[Crossref]

M. L. Zimmermann, M. G. Littman, M. M. Kash, and D. Kleppner, “Stark structure of the Rydberg states of alkali-metal atoms,” Phys. Rev. A 20, 2251 (1979).
[Crossref]

1978 (1)

1977 (1)

1970 (1)

K. T. Lu and U. Fano, “Graphic analysis of perturbed Rydberg series,” Phys. Rev. A 2, 81 (1970).
[Crossref]

1961 (1)

U. Fano, “Effects of configuration interactions of intensites and phase shifts,” Phys. Rev. 124, 1866 (1961).
[Crossref]

1949 (1)

D. R. Bates and A. Damgaard, “The calculation of the absolute strengths of spectral lines,” Philos. Trans. R. Soc. London Ser. A 242, 101 (1949).
[Crossref]

1940 (1)

H. N. Russell, R. B. King, and C. E. Moore, “The arc spectrum of cobalt,” Phys. Rev. 58, 407 (1940).
[Crossref]

Armentrout, P. B.

R. Georgiadis and P. B. Armentrout, “Multiphoton ionization of VOCl3,” Chem Phys. Lett. 137, 144 (1987).
[Crossref]

Bates, D. R.

D. R. Bates and A. Damgaard, “The calculation of the absolute strengths of spectral lines,” Philos. Trans. R. Soc. London Ser. A 242, 101 (1949).
[Crossref]

Berkowitz, J.

J. Berkowitz, Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic, New York, 1979).

Bethe, H. A.

H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957).
[Crossref]

Bjorklund, G. C.

G. C. Bjorklund, R. R. Freeman, and R. H. Storz, “Selective excitation of Rydberg levels in atomic hydrogen by three photon absorption,” Opt. Commun. 31, 47 (1979).
[Crossref]

Bourne, O. L.

Brown, C. M.

Callender, C. L.

Chaiken, J.

B. Samoriski and J. Chaiken, “Observation and assignment of 7D, 7P°, and 7S Rydberg series of molybdenum atoms by multiphoton dissociation and ionization spectroscopy of organometallic molecules,” Phys. Rev. A 38, 3498 (1988).
[Crossref] [PubMed]

Chapman, B.

B. Chapman, Glow Discharge Processes (Wiley-Interscience, New York, 1980).

Christensen, J.

Comaskey, B.

Condon, E. U.

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. Press, London, 1967).

Corliss, C.

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

Damgaard, A.

D. R. Bates and A. Damgaard, “The calculation of the absolute strengths of spectral lines,” Philos. Trans. R. Soc. London Ser. A 242, 101 (1949).
[Crossref]

Densberger, J.

Ernst, W. E.

W. E. Ernst, T. P. Softley, and R. N. Zare, “Stark-effect studies in xenon autoionizing Rydberg states using a tunable extreme-ultraviolet laser source,” Phys. Rev. A 37, 4172 (1988).
[Crossref] [PubMed]

Fano, U.

K. T. Lu and U. Fano, “Graphic analysis of perturbed Rydberg series,” Phys. Rev. A 2, 81 (1970).
[Crossref]

U. Fano, “Effects of configuration interactions of intensites and phase shifts,” Phys. Rev. 124, 1866 (1961).
[Crossref]

Freeman, R. R.

G. C. Bjorklund, R. R. Freeman, and R. H. Storz, “Selective excitation of Rydberg levels in atomic hydrogen by three photon absorption,” Opt. Commun. 31, 47 (1979).
[Crossref]

Fuhr, J. R.

J. R. Fuhr, G. A. Martin, W. L. Weise, and S. M. Younger, “Atomic transition probabilities for iron, cobalt, and nickel (a critical data compilation of allowed lines),” J. Phys. Chem. Ref. Data 10, 305 (1981).
[Crossref]

Ganguly, B. N.

J. R. Shoemaker, B. N. Ganguly, and A. Garscadden, “Stark spectroscopic measurement of spatially resolved electric field and electric field gradients in a glow discharge,” Appl. Phys. Lett. 52, 2019 (1988).
[Crossref]

Garscadden, A.

J. R. Shoemaker, B. N. Ganguly, and A. Garscadden, “Stark spectroscopic measurement of spatially resolved electric field and electric field gradients in a glow discharge,” Appl. Phys. Lett. 52, 2019 (1988).
[Crossref]

Georgiadis, R.

R. Georgiadis and P. B. Armentrout, “Multiphoton ionization of VOCl3,” Chem Phys. Lett. 137, 144 (1987).
[Crossref]

Ginter, M. L.

Griem, H. R.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).

Gudeman, C. S.

R. H. Page, C. S. Gudeman, and M. V. Mitchell, “Radiofrequency sputter source for laser-induced fluorescence studies of transition metal atoms and dimers,” Chem. Phys. 140, 65 (1990).
[Crossref]

R. H. Page, C. S. Gudeman, and V. J. Novotny, “Glow-discharge optical spectroscopy as a diagnostic of sputtered Permalloy film composition and saturation magnetostriction,” J. Appl. Phys. 65, 3586 (1989).
[Crossref]

R. H. Page and C. S. Gudeman, “Rotationally resolved dicopper laser-induced fluorescence spectra, the long-awaited Π state, and atomic-state parentages of known molecular states,” submitted to J. Chem. Phys.

Hackett, P. A.

Humphries, M. R.

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series,” J. Chem Phys. 85, 3194 (1986).
[Crossref]

Johansson, S.

C. M. Brown, M. L. Ginter, S. Johansson, and S. G. Tilford, “Absorption spectra of Fe iin the 1550–3215-Å region,” J. Opt. Soc. Am. B 5, 2125 (1988).
[Crossref]

S. Johansson, “On regularities in complex spectra of iron group elements and their dominance in stellar spectra,” Phys. Scr. 36, 99 (1987).
[Crossref]

Kash, M. M.

M. L. Zimmermann, M. G. Littman, M. M. Kash, and D. Kleppner, “Stark structure of the Rydberg states of alkali-metal atoms,” Phys. Rev. A 20, 2251 (1979).
[Crossref]

King, D. S.

King, R. B.

H. N. Russell, R. B. King, and C. E. Moore, “The arc spectrum of cobalt,” Phys. Rev. 58, 407 (1940).
[Crossref]

Kleppner, D.

M. L. Zimmermann, M. G. Littman, M. M. Kash, and D. Kleppner, “Stark structure of the Rydberg states of alkali-metal atoms,” Phys. Rev. A 20, 2251 (1979).
[Crossref]

Knight, R. D.

Littman, M. G.

M. L. Zimmermann, M. G. Littman, M. M. Kash, and D. Kleppner, “Stark structure of the Rydberg states of alkali-metal atoms,” Phys. Rev. A 20, 2251 (1979).
[Crossref]

Lu, K. T.

K. T. Lu and U. Fano, “Graphic analysis of perturbed Rydberg series,” Phys. Rev. A 2, 81 (1970).
[Crossref]

Martin, G. A.

J. R. Fuhr, G. A. Martin, W. L. Weise, and S. M. Younger, “Atomic transition probabilities for iron, cobalt, and nickel (a critical data compilation of allowed lines),” J. Phys. Chem. Ref. Data 10, 305 (1981).
[Crossref]

McAfee, J. M.

Miles, B. M.

W. L. Weise, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities, Nat. Stand. Ref. Data Ser. Natl. Bur. Stand22, (1969), Vol. II.

Mitchell, M. V.

R. H. Page, C. S. Gudeman, and M. V. Mitchell, “Radiofrequency sputter source for laser-induced fluorescence studies of transition metal atoms and dimers,” Chem. Phys. 140, 65 (1990).
[Crossref]

Mitchell, S. A.

D. M. Rayner, S. A. Mitchell, O. L. Bourne, and P. A. Hackett, “First-ionization potential of niobium and molybdenum by double-resonance, field-ionization spectroscopy,” J. Opt. Soc. Am. B 4, 900 (1987).
[Crossref]

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series,” J. Chem Phys. 85, 3194 (1986).
[Crossref]

Moore, C. E.

H. N. Russell, R. B. King, and C. E. Moore, “The arc spectrum of cobalt,” Phys. Rev. 58, 407 (1940).
[Crossref]

Nestor, J. R.

Novotny, V. J.

R. H. Page, C. S. Gudeman, and V. J. Novotny, “Glow-discharge optical spectroscopy as a diagnostic of sputtered Permalloy film composition and saturation magnetostriction,” J. Appl. Phys. 65, 3586 (1989).
[Crossref]

Page, R. H.

R. H. Page, C. S. Gudeman, and M. V. Mitchell, “Radiofrequency sputter source for laser-induced fluorescence studies of transition metal atoms and dimers,” Chem. Phys. 140, 65 (1990).
[Crossref]

R. H. Page, C. S. Gudeman, and V. J. Novotny, “Glow-discharge optical spectroscopy as a diagnostic of sputtered Permalloy film composition and saturation magnetostriction,” J. Appl. Phys. 65, 3586 (1989).
[Crossref]

R. H. Page and C. S. Gudeman, “Rotationally resolved dicopper laser-induced fluorescence spectra, the long-awaited Π state, and atomic-state parentages of known molecular states,” submitted to J. Chem. Phys.

Paisner, J. A.

Radzig, A. A.

A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions, Vol. 31 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1985).
[Crossref]

Rayner, D. M.

Russell, H. N.

H. N. Russell, R. B. King, and C. E. Moore, “The arc spectrum of cobalt,” Phys. Rev. 58, 407 (1940).
[Crossref]

Salpeter, E. E.

H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957).
[Crossref]

Samoriski, B.

B. Samoriski and J. Chaiken, “Observation and assignment of 7D, 7P°, and 7S Rydberg series of molybdenum atoms by multiphoton dissociation and ionization spectroscopy of organometallic molecules,” Phys. Rev. A 38, 3498 (1988).
[Crossref] [PubMed]

Schenck, P.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), p. 341.

Shoemaker, J. R.

J. R. Shoemaker, B. N. Ganguly, and A. Garscadden, “Stark spectroscopic measurement of spatially resolved electric field and electric field gradients in a glow discharge,” Appl. Phys. Lett. 52, 2019 (1988).
[Crossref]

Shortley, G. H.

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. Press, London, 1967).

Smirnov, B. M.

A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions, Vol. 31 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1985).
[Crossref]

Smith, M. W.

W. L. Weise, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities, Nat. Stand. Ref. Data Ser. Natl. Bur. Stand22, (1969), Vol. II.

Smyth, K.

Softley, T. P.

W. E. Ernst, T. P. Softley, and R. N. Zare, “Stark-effect studies in xenon autoionizing Rydberg states using a tunable extreme-ultraviolet laser source,” Phys. Rev. A 37, 4172 (1988).
[Crossref] [PubMed]

Sohl, J. E.

Storz, R. H.

G. C. Bjorklund, R. R. Freeman, and R. H. Storz, “Selective excitation of Rydberg levels in atomic hydrogen by three photon absorption,” Opt. Commun. 31, 47 (1979).
[Crossref]

Sugar, J.

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

Tilford, S. G.

Travis, J. C.

Weise, W. L.

J. R. Fuhr, G. A. Martin, W. L. Weise, and S. M. Younger, “Atomic transition probabilities for iron, cobalt, and nickel (a critical data compilation of allowed lines),” J. Phys. Chem. Ref. Data 10, 305 (1981).
[Crossref]

W. L. Weise, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities, Nat. Stand. Ref. Data Ser. Natl. Bur. Stand22, (1969), Vol. II.

Worden, E. F.

Younger, S. M.

J. R. Fuhr, G. A. Martin, W. L. Weise, and S. M. Younger, “Atomic transition probabilities for iron, cobalt, and nickel (a critical data compilation of allowed lines),” J. Phys. Chem. Ref. Data 10, 305 (1981).
[Crossref]

Zare, R. N.

W. E. Ernst, T. P. Softley, and R. N. Zare, “Stark-effect studies in xenon autoionizing Rydberg states using a tunable extreme-ultraviolet laser source,” Phys. Rev. A 37, 4172 (1988).
[Crossref] [PubMed]

Zhu, Y.

Zimmermann, M. L.

M. L. Zimmermann, M. G. Littman, M. M. Kash, and D. Kleppner, “Stark structure of the Rydberg states of alkali-metal atoms,” Phys. Rev. A 20, 2251 (1979).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. R. Shoemaker, B. N. Ganguly, and A. Garscadden, “Stark spectroscopic measurement of spatially resolved electric field and electric field gradients in a glow discharge,” Appl. Phys. Lett. 52, 2019 (1988).
[Crossref]

Chem Phys. Lett. (1)

R. Georgiadis and P. B. Armentrout, “Multiphoton ionization of VOCl3,” Chem Phys. Lett. 137, 144 (1987).
[Crossref]

Chem. Phys. (1)

R. H. Page, C. S. Gudeman, and M. V. Mitchell, “Radiofrequency sputter source for laser-induced fluorescence studies of transition metal atoms and dimers,” Chem. Phys. 140, 65 (1990).
[Crossref]

J. Appl. Phys. (1)

R. H. Page, C. S. Gudeman, and V. J. Novotny, “Glow-discharge optical spectroscopy as a diagnostic of sputtered Permalloy film composition and saturation magnetostriction,” J. Appl. Phys. 65, 3586 (1989).
[Crossref]

J. Chem Phys. (1)

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg series,” J. Chem Phys. 85, 3194 (1986).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (6)

J. Phys. Chem. Ref. Data (2)

J. Sugar and C. Corliss, “Atomic energy levels of the iron period elements: potassium through nickel,” J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

J. R. Fuhr, G. A. Martin, W. L. Weise, and S. M. Younger, “Atomic transition probabilities for iron, cobalt, and nickel (a critical data compilation of allowed lines),” J. Phys. Chem. Ref. Data 10, 305 (1981).
[Crossref]

Opt. Commun. (1)

G. C. Bjorklund, R. R. Freeman, and R. H. Storz, “Selective excitation of Rydberg levels in atomic hydrogen by three photon absorption,” Opt. Commun. 31, 47 (1979).
[Crossref]

Philos. Trans. R. Soc. London Ser. A (1)

D. R. Bates and A. Damgaard, “The calculation of the absolute strengths of spectral lines,” Philos. Trans. R. Soc. London Ser. A 242, 101 (1949).
[Crossref]

Phys. Rev. (2)

H. N. Russell, R. B. King, and C. E. Moore, “The arc spectrum of cobalt,” Phys. Rev. 58, 407 (1940).
[Crossref]

U. Fano, “Effects of configuration interactions of intensites and phase shifts,” Phys. Rev. 124, 1866 (1961).
[Crossref]

Phys. Rev. A (4)

K. T. Lu and U. Fano, “Graphic analysis of perturbed Rydberg series,” Phys. Rev. A 2, 81 (1970).
[Crossref]

M. L. Zimmermann, M. G. Littman, M. M. Kash, and D. Kleppner, “Stark structure of the Rydberg states of alkali-metal atoms,” Phys. Rev. A 20, 2251 (1979).
[Crossref]

W. E. Ernst, T. P. Softley, and R. N. Zare, “Stark-effect studies in xenon autoionizing Rydberg states using a tunable extreme-ultraviolet laser source,” Phys. Rev. A 37, 4172 (1988).
[Crossref] [PubMed]

B. Samoriski and J. Chaiken, “Observation and assignment of 7D, 7P°, and 7S Rydberg series of molybdenum atoms by multiphoton dissociation and ionization spectroscopy of organometallic molecules,” Phys. Rev. A 38, 3498 (1988).
[Crossref] [PubMed]

Phys. Scr. (1)

S. Johansson, “On regularities in complex spectra of iron group elements and their dominance in stellar spectra,” Phys. Scr. 36, 99 (1987).
[Crossref]

Other (9)

R. H. Page and C. S. Gudeman, “Rotationally resolved dicopper laser-induced fluorescence spectra, the long-awaited Π state, and atomic-state parentages of known molecular states,” submitted to J. Chem. Phys.

A. A. Radzig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions, Vol. 31 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1985).
[Crossref]

J. Berkowitz, Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic, New York, 1979).

W. L. Weise, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities, Nat. Stand. Ref. Data Ser. Natl. Bur. Stand22, (1969), Vol. II.

B. Chapman, Glow Discharge Processes (Wiley-Interscience, New York, 1980).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), p. 341.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).

H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957).
[Crossref]

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. Press, London, 1967).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Concept of the fluorescence-dip experiment used to obtain cleanly resolved Rydberg series. A laser at frequency ν1 excites intense resonance fluorescence from an intermediate state i well characterized in terms of electron configuration, angular momentum, etc., thereby labeling that state. Signals that are due to other thermally populated levels do not occur. A tunable beam at frequency ν2 of near-saturating intensity induces transitions from i to final states f, which in this experiment are Rydberg states. Fluorescence from i is thus reduced, creating fluorescence dips.

Fig. 2
Fig. 2

Sputtering chamber fashioned from a six-way cross. Windows on four of its arms allow for laser exictation and fluorescence collection in a variety of configurations. Spacers on the chamber arms keep the windows farther from the sputtering target, reducing the rate of metal deposition on the windows. The automatically tuned rf matching unit is mounted directly on the chamber, and the entire chamber is supported on an X–Y translation stage to allow for imaging of different parts of the glow. Argon gas is admitted with a mass-flow controller and pumped away with a turbomolecular pump backed by a direct-drive mechanical pump. The chamber pressure is normally kept at 50–100 mTorr during spectroscopic experiments. The excitation sources in this case were excimer-pumped dye lasers, with an optional amplifier and frequency-doubling crystals used to generate the fixed frequency ν1. Two beams at ν1 entered the chamber through its top and passed just in front of the target. One beam was overlapped by the ν2 beam, creating two fluorescence signals whose intensites were ratioed to reduce jitter. Fluorescence detection was with an OMA attached to a spectrograph whose slits were opened wide to work as a filter and permit separate imaging of the two fluorescence signals.

Fig. 3
Fig. 3

(a) Implementation of fluorescence-dip spectroscopy in the Fe atom. Energy levels of the ground, intermediate, and ion states are labeled with their angular momenta and energies. The Rydberg series convergence limit is shown, and it forms the zero for the scale of the ion levels (in parentheses.) The ν1 transition is a fully allowed (oscillator strength of 0.56) 4s → 4p excitation, with no change in 3d core configuration. 4s4p → 4snd and 4s4p → 4sns Rydberg series are expected to be observed in this scheme. Since different angular-momentum coupling schemes are expected to apply to the Rydberg and intermediate levels, the number of nonforbidden transitions is substantial, and the use of LS-coupling language to name the series is risky. Here the Fe ii 3d6 5D parent term is also the grandparent of the Fe i 40 257 cm−1 level, so series converging to the ground state of Fe ii are observable, (b) Iron-atom fluorescence-dip spectrum. The nd series has been assigned with principal quantum numbers up to n = 33. Dips due to the ns series are visible but weaker. From these series, a convergence limit of 63 737 cm−1 is derived, and this and subsequent spectra are plotted with the limit at the lower right-hand corner of the figure. Quantum defects δ2 and δ0 for the nd and ns series, respectively, are 1.25 and 2.6. A perturbation at n = 26 is due to the series converging to the core’s 385 cm−1 level; see text for details. Perturbations in the spectra owing to laser-frequency adjustment during the scan are perceived as sudden changes in baseline level and are marked with asterisks, (c) Quantum-defect plot, showing perturbations at n values of 26 and 33, due to the n* = 14, 15 members of the series converging to the core’s 385-cm−1 level. From this plot and considerations of the 4d energy levels, the δ2 value of 1.25 is selected, as opposed to a value differing by an integer.

Fig. 4
Fig. 4

For Ni: (a), (b), (c) drawn corresponding to Figs. 3(a), 3(b), and 3(c), respectively. Here the convergence is to the 8394-cm−1 level of Ni ii, whose parent term is the grandparent of the 43 090-cm−1 intermediate state. The ns series is apparently not observed, perhaps because of accidentally small matrix elements for the transitions 4pns. The perturbation at n = 26 is due to the n = 11 member of the series converging to the 933-cm−1 level of Ni ii The 70 013-cm−1 convergence, corrected for the core excitation of 8394 cm−1, implies an IP of 61 619 cm−1. Broadening of the series members at high n is attributed to Stark shifts from fields in the glow discharge of the order of 20 V/cm, but broadening owing to collisions with atoms or electrons could also be present.

Fig. 5
Fig. 5

(a)–(c) As in Figs. 3(a)3(c) and 4(a)4(c), for Co. Series converging to the Co ii 3351- and 4029-cm−1 levels are observed; the latter are marked with primed numbers. A stray dip marked with an asterisk is due to an intercombination transition occurring in the frequency range covered by the ν2 beam. The series limit of 66 915 cm−1 leads to an IP of 63 564 cm−1 Quantum defects plotted for n values below 20 are associated with the excited-state (n) series.

Fig. 6
Fig. 6

Cobalt autoionizing nd series converging to the Co ii 4029-cm−1 level. The asymmetric dips are typical of autoionizing states, and the shape is described with Fano’s q parameter in the range −2 to −3, which indicates that the two series above and below the IP have similar oscillator strengths and has implications concerning the relative signs of electric dipole and perturbation matrix elements. Lifetimes near 1 psec are deduced from the linewidths of a few wave numbers. The dip marked with an asterisk was explained in Fig. 5. To within our accuracy, this series implies the same IP as the one below the ionization limit in Fig. 5.

Fig. 7
Fig. 7

(a)–(c) As in Figs. 3(a)3(c), 4(a)4(c), and 5(a)5(c), for Ti. With a 3d shell less than half full, the multiplets are regular instead of inverted. The strongest series observed is assigned as nd, and the weak dips halfway between the d series dips are assigned as the ns series. Medium-strength dips just to the blue of the main d dips appear to blend into them as n increases and are thought to be from different spin states of the nd series. This smaller atom has a smaller quantum defect (by ~0.3) than the ones with fuller 3d shells. With a convergence limit of 56 289 cm−1, the IP is 55 073 cm−1, in agreement with the recent value of Knight et al.34

Fig. 8
Fig. 8

(a)–(c) As in Figs. 3(a)3(c), 4(a)4(c), 5(a)5(c), and 7(a)7(c), for V Here a single intense d series and weaker s series are visible. Stray peaks at the blue end of the spectrum, marked with asterisks, are due to ν2 laser-induced fluorescence from another manifold of metastable states populated in the discharge. Radiations from the r4F levels occur near the detection wavelength of 411 nm. The convergence limit of 54 752 cm−1 implies an IP of 54 413 cm−1.

Fig. 9
Fig. 9

Investigation of the V series at lower values of principal quantum number, showing that each Rydberg configuration contains resolvable structure. (See the discussion in Subsection 3.A.) This structure appears to be quite irregular, in contrast with the patterns of states seen in Stark spectra of alkali atoms or rare gases. As n decreases, the full complexity of a transition-metal energy-level scheme should develop.

Tables (2)

Tables Icon

Table 1 Ionization Potentials (in cm−1), Quantum Defects, and Parent Levels for the Rydberg Spectra Studied in this Experimenta

Tables Icon

Table 2 Energies of Upper States in the nd Series (in cm−1), Derived by Adding ν2 to the Intermediate-State Energya

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ d v 10 12 f ,
σ p = 10 12 f Δ v .
E ( n , l ) = IP Ry ( n δ l ) 2 ,
δ ( n ) = n [ Ry IP E ( n ) ] 1 / 2 .

Metrics