Abstract

Measurement of time-resolved circular dichroism signals can be complicated by transient linear dichroism and birefringence effects. These signals arise from using a polarized light beam for excitation and from imperfect modulation of the circularly polarized probe beam. In a polarization-modulation experiment designed to measure the time dependence of circular dichroism, a small amount of pump-induced linear dichroism coupled with birefringence of optics would dominate the observed signals, rendering an accurate measurement virtually impossible. We examine these effects within the Jones matrix formalism. These calculations demonstrate how one can experimentally eliminate transient linear polarization signals, permitting accurate measurement of the transient circular dichoism of a sample with picosecond resolution. Theory and experiment are compared for time-dependent data on myoglobin following the photoelimination of CO from carbonmonoxy myoglobin.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Drake, J. Phys. E 30, 170 (1986).
    [CrossRef]
  2. H. P. Jensen, J. A. Schellman, and T. Troxell, Appl. Spectrosc. 32, 192 (1978).
    [CrossRef]
  3. J. A. Schellman, in Polarization Spectroscopy of Ordered Systems, B. Samori and E. W. Thulstrup, eds. (Kluwer, Hingham, Mass., 1988).
  4. J. Michl and E. Thulstrup, Spectroscopy with Polarized Light (VCH, New York, 1986).
  5. J. Schellman and H. P. Jensen, Chem. Rev. 87, 1359 (1987).
    [CrossRef]
  6. G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford U. Press, Oxford, 1986).
  7. D. Waldeck, A. J. Cross, D. B. McDonald, and G. R. Fleming, J. Chem. Phys. 74, 3381 (1981).
    [CrossRef]
  8. D. H. Waldeck and G. R. Fleming, J. Phys. Chem. 85, 2614 (1981).
    [CrossRef]
  9. A. J. Cross, D. H. Waldeck, and G. R. Fleming, J. Chem. Phys. 78, 6455 (1983).
    [CrossRef]
  10. A. von Jena and H. E. Lessing, Appl. Phys. 19, 131 (1979).
    [CrossRef]
  11. A. von Jena and H. E. Lessing, Ber. Bunsenges. Phys. Chem. 83, 181 (1979).
    [CrossRef]
  12. C. V. Shank and E. P. Ippen, Appl. Phys. Lett. 26, 62 (1975).
    [CrossRef]
  13. D. Reiser and A. Laubereau, Chem. Phys. Lett. 92, 297 (1982).
    [CrossRef]
  14. G. S. Beddard and M. J. Westby, Chem. Phys. 57, 121 (1981).
    [CrossRef]
  15. G. L. Easley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum Electron. QE-14, 45 (1978).
    [CrossRef]
  16. A. Owyoung, IEEE J. Quantum Electron. QE-14, 192 (1978).
    [CrossRef]
  17. See for example C. R. Cantor and P. R. Schimmel, Biophysical Chemistry (Freeman, New York, 1980).
  18. Y. Sugita, M. Nagai, and Y. Yoneyama, J. Biol. Chem. 246, 383 (1971).
    [PubMed]
  19. R. Woody, in Biochemical and Clinical Aspects of Hemoglobin Abnormalities, W. S. Caughey, ed. (Adademic, New York, 1978).
  20. M-C. Hsu and R. Woody, J. Am. Chem. Soc.,  91, 3679 (1969).
    [CrossRef]
  21. M-C. Hsu and R. Woody, J. Am. Chem. Soc. 93, 3515 (1971).
    [CrossRef] [PubMed]
  22. S. Beyshok, I. Tyuma, R. E. Benesch, and R. Benesch, J. Biol. Chem. 242, 2460 (1967).
  23. S. R. Simon and C. R. Cantor, Proc. Natl. Acad. Sci. (USA) 63, 205 (1969).
    [CrossRef]
  24. P. M. Bayley and M. Anson, Biopolymers 13, 401 (1974).
    [CrossRef]
  25. F. A. Ferrone, J. J. Hopfield, and S. E. Schnatterly, Rev. Sci. Instrum. 45, 1392 (1974).
    [CrossRef]
  26. D. S. Kliger and J. W. Lewis, Rev. Chem. Intermed. 8, 367 (1987).
    [CrossRef]
  27. J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, J. D. Kumtz, and D. S. Kliger, J. Phys. Chem.,  89, 289 (1985).
    [CrossRef]
  28. C. M. Einterz, J. W. Lewis, S. J. Milder, and D. S. Kliger, J. Phys. Chem. 89, 3845 (1985).
    [CrossRef]
  29. S. J. Milder, S. C. Bjorling, I. D. Kuntz, and D. S. Kliger, Bio-phys. J. 53, 659 (1988).
  30. X. Xie and J. D. Simon, Rev. Sci. Instrum. 60, 2614 (1989).
    [CrossRef]
  31. R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
    [CrossRef]
  32. R. C. Jones, J. Opt. Soc. Am. 31, 493 (1941).
    [CrossRef]
  33. R. C. Jones, J. Opt. Soc. Am. 31, 500 (1941).
    [CrossRef]
  34. R. C. Jones, J. Opt. Soc. Am. 32, 486 (1942).
    [CrossRef]
  35. R. C. Jones, J. Opt. Soc. Am. 37, 107 (1947).
    [CrossRef]
  36. R. C. Jones, J. Opt. Soc. Am. 37, 110 (1947).
    [CrossRef]
  37. R. C. Jones, J. Opt. Soc. Am. 38, 671 (1948).
    [CrossRef]
  38. X. Xie and J. D. Simon, Opt. Commun. 69, 303 (1989).
    [CrossRef]
  39. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, Orlando, Fla., 1990).
  40. S. B. Piepho and P. N. Schatz, Group Theory in Spectroscopy, with Applications to Magnetic Circular Dichroism (Wiley, New York, 1983).
  41. T. Samejima and J. T. Yang, J. Mol. Biol. 8, 863 (1964).
    [CrossRef] [PubMed]
  42. X. Xie and J. D. Simon, “Time-resolved dichroism and absorption studies of protein relaxation following photo-chemical elimination of CO from carbonmonoxy myoglobin,” submitted to Biochemistry.
  43. X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin,” submitted to J. Am. Chem. Soc.
  44. X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: experiment, theory, and applications to protein dynamics,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. Lakowitz, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1204, 66 (1990).
    [CrossRef]

1989 (2)

X. Xie and J. D. Simon, Rev. Sci. Instrum. 60, 2614 (1989).
[CrossRef]

X. Xie and J. D. Simon, Opt. Commun. 69, 303 (1989).
[CrossRef]

1988 (1)

S. J. Milder, S. C. Bjorling, I. D. Kuntz, and D. S. Kliger, Bio-phys. J. 53, 659 (1988).

1987 (2)

D. S. Kliger and J. W. Lewis, Rev. Chem. Intermed. 8, 367 (1987).
[CrossRef]

J. Schellman and H. P. Jensen, Chem. Rev. 87, 1359 (1987).
[CrossRef]

1986 (1)

A. F. Drake, J. Phys. E 30, 170 (1986).
[CrossRef]

1985 (2)

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, J. D. Kumtz, and D. S. Kliger, J. Phys. Chem.,  89, 289 (1985).
[CrossRef]

C. M. Einterz, J. W. Lewis, S. J. Milder, and D. S. Kliger, J. Phys. Chem. 89, 3845 (1985).
[CrossRef]

1983 (1)

A. J. Cross, D. H. Waldeck, and G. R. Fleming, J. Chem. Phys. 78, 6455 (1983).
[CrossRef]

1982 (1)

D. Reiser and A. Laubereau, Chem. Phys. Lett. 92, 297 (1982).
[CrossRef]

1981 (3)

G. S. Beddard and M. J. Westby, Chem. Phys. 57, 121 (1981).
[CrossRef]

D. Waldeck, A. J. Cross, D. B. McDonald, and G. R. Fleming, J. Chem. Phys. 74, 3381 (1981).
[CrossRef]

D. H. Waldeck and G. R. Fleming, J. Phys. Chem. 85, 2614 (1981).
[CrossRef]

1979 (2)

A. von Jena and H. E. Lessing, Appl. Phys. 19, 131 (1979).
[CrossRef]

A. von Jena and H. E. Lessing, Ber. Bunsenges. Phys. Chem. 83, 181 (1979).
[CrossRef]

1978 (3)

H. P. Jensen, J. A. Schellman, and T. Troxell, Appl. Spectrosc. 32, 192 (1978).
[CrossRef]

G. L. Easley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum Electron. QE-14, 45 (1978).
[CrossRef]

A. Owyoung, IEEE J. Quantum Electron. QE-14, 192 (1978).
[CrossRef]

1975 (1)

C. V. Shank and E. P. Ippen, Appl. Phys. Lett. 26, 62 (1975).
[CrossRef]

1974 (2)

P. M. Bayley and M. Anson, Biopolymers 13, 401 (1974).
[CrossRef]

F. A. Ferrone, J. J. Hopfield, and S. E. Schnatterly, Rev. Sci. Instrum. 45, 1392 (1974).
[CrossRef]

1971 (2)

M-C. Hsu and R. Woody, J. Am. Chem. Soc. 93, 3515 (1971).
[CrossRef] [PubMed]

Y. Sugita, M. Nagai, and Y. Yoneyama, J. Biol. Chem. 246, 383 (1971).
[PubMed]

1969 (2)

M-C. Hsu and R. Woody, J. Am. Chem. Soc.,  91, 3679 (1969).
[CrossRef]

S. R. Simon and C. R. Cantor, Proc. Natl. Acad. Sci. (USA) 63, 205 (1969).
[CrossRef]

1967 (1)

S. Beyshok, I. Tyuma, R. E. Benesch, and R. Benesch, J. Biol. Chem. 242, 2460 (1967).

1964 (1)

T. Samejima and J. T. Yang, J. Mol. Biol. 8, 863 (1964).
[CrossRef] [PubMed]

1948 (1)

1947 (2)

1942 (1)

1941 (3)

Anson, M.

P. M. Bayley and M. Anson, Biopolymers 13, 401 (1974).
[CrossRef]

Bayley, P. M.

P. M. Bayley and M. Anson, Biopolymers 13, 401 (1974).
[CrossRef]

Beddard, G. S.

G. S. Beddard and M. J. Westby, Chem. Phys. 57, 121 (1981).
[CrossRef]

Benesch, R.

S. Beyshok, I. Tyuma, R. E. Benesch, and R. Benesch, J. Biol. Chem. 242, 2460 (1967).

Benesch, R. E.

S. Beyshok, I. Tyuma, R. E. Benesch, and R. Benesch, J. Biol. Chem. 242, 2460 (1967).

Beyshok, S.

S. Beyshok, I. Tyuma, R. E. Benesch, and R. Benesch, J. Biol. Chem. 242, 2460 (1967).

Bjorling, S. C.

S. J. Milder, S. C. Bjorling, I. D. Kuntz, and D. S. Kliger, Bio-phys. J. 53, 659 (1988).

Cantor, C. R.

S. R. Simon and C. R. Cantor, Proc. Natl. Acad. Sci. (USA) 63, 205 (1969).
[CrossRef]

See for example C. R. Cantor and P. R. Schimmel, Biophysical Chemistry (Freeman, New York, 1980).

Cross, A. J.

A. J. Cross, D. H. Waldeck, and G. R. Fleming, J. Chem. Phys. 78, 6455 (1983).
[CrossRef]

D. Waldeck, A. J. Cross, D. B. McDonald, and G. R. Fleming, J. Chem. Phys. 74, 3381 (1981).
[CrossRef]

Drake, A. F.

A. F. Drake, J. Phys. E 30, 170 (1986).
[CrossRef]

Easley, G. L.

G. L. Easley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum Electron. QE-14, 45 (1978).
[CrossRef]

Einterz, C. M.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, J. D. Kumtz, and D. S. Kliger, J. Phys. Chem.,  89, 289 (1985).
[CrossRef]

C. M. Einterz, J. W. Lewis, S. J. Milder, and D. S. Kliger, J. Phys. Chem. 89, 3845 (1985).
[CrossRef]

Ferrone, F. A.

F. A. Ferrone, J. J. Hopfield, and S. E. Schnatterly, Rev. Sci. Instrum. 45, 1392 (1974).
[CrossRef]

Fleming, G. R.

A. J. Cross, D. H. Waldeck, and G. R. Fleming, J. Chem. Phys. 78, 6455 (1983).
[CrossRef]

D. Waldeck, A. J. Cross, D. B. McDonald, and G. R. Fleming, J. Chem. Phys. 74, 3381 (1981).
[CrossRef]

D. H. Waldeck and G. R. Fleming, J. Phys. Chem. 85, 2614 (1981).
[CrossRef]

G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford U. Press, Oxford, 1986).

Hopfield, J. J.

F. A. Ferrone, J. J. Hopfield, and S. E. Schnatterly, Rev. Sci. Instrum. 45, 1392 (1974).
[CrossRef]

Hsu, M-C.

M-C. Hsu and R. Woody, J. Am. Chem. Soc. 93, 3515 (1971).
[CrossRef] [PubMed]

M-C. Hsu and R. Woody, J. Am. Chem. Soc.,  91, 3679 (1969).
[CrossRef]

Ippen, E. P.

C. V. Shank and E. P. Ippen, Appl. Phys. Lett. 26, 62 (1975).
[CrossRef]

Jensen, H. P.

Jones, R. C.

Kliger, D. S.

S. J. Milder, S. C. Bjorling, I. D. Kuntz, and D. S. Kliger, Bio-phys. J. 53, 659 (1988).

D. S. Kliger and J. W. Lewis, Rev. Chem. Intermed. 8, 367 (1987).
[CrossRef]

C. M. Einterz, J. W. Lewis, S. J. Milder, and D. S. Kliger, J. Phys. Chem. 89, 3845 (1985).
[CrossRef]

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, J. D. Kumtz, and D. S. Kliger, J. Phys. Chem.,  89, 289 (1985).
[CrossRef]

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, Orlando, Fla., 1990).

Kumtz, J. D.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, J. D. Kumtz, and D. S. Kliger, J. Phys. Chem.,  89, 289 (1985).
[CrossRef]

Kuntz, I. D.

S. J. Milder, S. C. Bjorling, I. D. Kuntz, and D. S. Kliger, Bio-phys. J. 53, 659 (1988).

Laubereau, A.

D. Reiser and A. Laubereau, Chem. Phys. Lett. 92, 297 (1982).
[CrossRef]

Lessing, H. E.

A. von Jena and H. E. Lessing, Appl. Phys. 19, 131 (1979).
[CrossRef]

A. von Jena and H. E. Lessing, Ber. Bunsenges. Phys. Chem. 83, 181 (1979).
[CrossRef]

Levenson, M. D.

G. L. Easley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum Electron. QE-14, 45 (1978).
[CrossRef]

Lewis, J. W.

D. S. Kliger and J. W. Lewis, Rev. Chem. Intermed. 8, 367 (1987).
[CrossRef]

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, J. D. Kumtz, and D. S. Kliger, J. Phys. Chem.,  89, 289 (1985).
[CrossRef]

C. M. Einterz, J. W. Lewis, S. J. Milder, and D. S. Kliger, J. Phys. Chem. 89, 3845 (1985).
[CrossRef]

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, Orlando, Fla., 1990).

McDonald, D. B.

D. Waldeck, A. J. Cross, D. B. McDonald, and G. R. Fleming, J. Chem. Phys. 74, 3381 (1981).
[CrossRef]

Michl, J.

J. Michl and E. Thulstrup, Spectroscopy with Polarized Light (VCH, New York, 1986).

Milder, S. J.

S. J. Milder, S. C. Bjorling, I. D. Kuntz, and D. S. Kliger, Bio-phys. J. 53, 659 (1988).

C. M. Einterz, J. W. Lewis, S. J. Milder, and D. S. Kliger, J. Phys. Chem. 89, 3845 (1985).
[CrossRef]

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, J. D. Kumtz, and D. S. Kliger, J. Phys. Chem.,  89, 289 (1985).
[CrossRef]

Nagai, M.

Y. Sugita, M. Nagai, and Y. Yoneyama, J. Biol. Chem. 246, 383 (1971).
[PubMed]

Owyoung, A.

A. Owyoung, IEEE J. Quantum Electron. QE-14, 192 (1978).
[CrossRef]

Piepho, S. B.

S. B. Piepho and P. N. Schatz, Group Theory in Spectroscopy, with Applications to Magnetic Circular Dichroism (Wiley, New York, 1983).

Randall, C. E.

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, Orlando, Fla., 1990).

Reiser, D.

D. Reiser and A. Laubereau, Chem. Phys. Lett. 92, 297 (1982).
[CrossRef]

Samejima, T.

T. Samejima and J. T. Yang, J. Mol. Biol. 8, 863 (1964).
[CrossRef] [PubMed]

Schatz, P. N.

S. B. Piepho and P. N. Schatz, Group Theory in Spectroscopy, with Applications to Magnetic Circular Dichroism (Wiley, New York, 1983).

Schellman, J.

J. Schellman and H. P. Jensen, Chem. Rev. 87, 1359 (1987).
[CrossRef]

Schellman, J. A.

H. P. Jensen, J. A. Schellman, and T. Troxell, Appl. Spectrosc. 32, 192 (1978).
[CrossRef]

J. A. Schellman, in Polarization Spectroscopy of Ordered Systems, B. Samori and E. W. Thulstrup, eds. (Kluwer, Hingham, Mass., 1988).

Schimmel, P. R.

See for example C. R. Cantor and P. R. Schimmel, Biophysical Chemistry (Freeman, New York, 1980).

Schnatterly, S. E.

F. A. Ferrone, J. J. Hopfield, and S. E. Schnatterly, Rev. Sci. Instrum. 45, 1392 (1974).
[CrossRef]

Shank, C. V.

C. V. Shank and E. P. Ippen, Appl. Phys. Lett. 26, 62 (1975).
[CrossRef]

Simon, J. D.

X. Xie and J. D. Simon, Rev. Sci. Instrum. 60, 2614 (1989).
[CrossRef]

X. Xie and J. D. Simon, Opt. Commun. 69, 303 (1989).
[CrossRef]

X. Xie and J. D. Simon, “Time-resolved dichroism and absorption studies of protein relaxation following photo-chemical elimination of CO from carbonmonoxy myoglobin,” submitted to Biochemistry.

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin,” submitted to J. Am. Chem. Soc.

X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: experiment, theory, and applications to protein dynamics,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. Lakowitz, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1204, 66 (1990).
[CrossRef]

Simon, S. R.

S. R. Simon and C. R. Cantor, Proc. Natl. Acad. Sci. (USA) 63, 205 (1969).
[CrossRef]

Sugita, Y.

Y. Sugita, M. Nagai, and Y. Yoneyama, J. Biol. Chem. 246, 383 (1971).
[PubMed]

Thulstrup, E.

J. Michl and E. Thulstrup, Spectroscopy with Polarized Light (VCH, New York, 1986).

Tilton, R. F.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, J. D. Kumtz, and D. S. Kliger, J. Phys. Chem.,  89, 289 (1985).
[CrossRef]

Tolles, W. M.

G. L. Easley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum Electron. QE-14, 45 (1978).
[CrossRef]

Troxell, T.

Tyuma, I.

S. Beyshok, I. Tyuma, R. E. Benesch, and R. Benesch, J. Biol. Chem. 242, 2460 (1967).

von Jena, A.

A. von Jena and H. E. Lessing, Ber. Bunsenges. Phys. Chem. 83, 181 (1979).
[CrossRef]

A. von Jena and H. E. Lessing, Appl. Phys. 19, 131 (1979).
[CrossRef]

Waldeck, D.

D. Waldeck, A. J. Cross, D. B. McDonald, and G. R. Fleming, J. Chem. Phys. 74, 3381 (1981).
[CrossRef]

Waldeck, D. H.

A. J. Cross, D. H. Waldeck, and G. R. Fleming, J. Chem. Phys. 78, 6455 (1983).
[CrossRef]

D. H. Waldeck and G. R. Fleming, J. Phys. Chem. 85, 2614 (1981).
[CrossRef]

Westby, M. J.

G. S. Beddard and M. J. Westby, Chem. Phys. 57, 121 (1981).
[CrossRef]

Woody, R.

M-C. Hsu and R. Woody, J. Am. Chem. Soc. 93, 3515 (1971).
[CrossRef] [PubMed]

M-C. Hsu and R. Woody, J. Am. Chem. Soc.,  91, 3679 (1969).
[CrossRef]

R. Woody, in Biochemical and Clinical Aspects of Hemoglobin Abnormalities, W. S. Caughey, ed. (Adademic, New York, 1978).

Xie, X.

X. Xie and J. D. Simon, Rev. Sci. Instrum. 60, 2614 (1989).
[CrossRef]

X. Xie and J. D. Simon, Opt. Commun. 69, 303 (1989).
[CrossRef]

X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: experiment, theory, and applications to protein dynamics,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. Lakowitz, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1204, 66 (1990).
[CrossRef]

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin,” submitted to J. Am. Chem. Soc.

X. Xie and J. D. Simon, “Time-resolved dichroism and absorption studies of protein relaxation following photo-chemical elimination of CO from carbonmonoxy myoglobin,” submitted to Biochemistry.

Yang, J. T.

T. Samejima and J. T. Yang, J. Mol. Biol. 8, 863 (1964).
[CrossRef] [PubMed]

Yoneyama, Y.

Y. Sugita, M. Nagai, and Y. Yoneyama, J. Biol. Chem. 246, 383 (1971).
[PubMed]

Appl. Phys. (1)

A. von Jena and H. E. Lessing, Appl. Phys. 19, 131 (1979).
[CrossRef]

Appl. Phys. Lett. (1)

C. V. Shank and E. P. Ippen, Appl. Phys. Lett. 26, 62 (1975).
[CrossRef]

Appl. Spectrosc. (1)

Ber. Bunsenges. Phys. Chem. (1)

A. von Jena and H. E. Lessing, Ber. Bunsenges. Phys. Chem. 83, 181 (1979).
[CrossRef]

Bio-phys. J. (1)

S. J. Milder, S. C. Bjorling, I. D. Kuntz, and D. S. Kliger, Bio-phys. J. 53, 659 (1988).

Biopolymers (1)

P. M. Bayley and M. Anson, Biopolymers 13, 401 (1974).
[CrossRef]

Chem. Phys. (1)

G. S. Beddard and M. J. Westby, Chem. Phys. 57, 121 (1981).
[CrossRef]

Chem. Phys. Lett. (1)

D. Reiser and A. Laubereau, Chem. Phys. Lett. 92, 297 (1982).
[CrossRef]

Chem. Rev. (1)

J. Schellman and H. P. Jensen, Chem. Rev. 87, 1359 (1987).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. L. Easley, M. D. Levenson, and W. M. Tolles, IEEE J. Quantum Electron. QE-14, 45 (1978).
[CrossRef]

A. Owyoung, IEEE J. Quantum Electron. QE-14, 192 (1978).
[CrossRef]

J. Am. Chem. Soc. (2)

M-C. Hsu and R. Woody, J. Am. Chem. Soc.,  91, 3679 (1969).
[CrossRef]

M-C. Hsu and R. Woody, J. Am. Chem. Soc. 93, 3515 (1971).
[CrossRef] [PubMed]

J. Biol. Chem. (2)

S. Beyshok, I. Tyuma, R. E. Benesch, and R. Benesch, J. Biol. Chem. 242, 2460 (1967).

Y. Sugita, M. Nagai, and Y. Yoneyama, J. Biol. Chem. 246, 383 (1971).
[PubMed]

J. Chem. Phys. (2)

D. Waldeck, A. J. Cross, D. B. McDonald, and G. R. Fleming, J. Chem. Phys. 74, 3381 (1981).
[CrossRef]

A. J. Cross, D. H. Waldeck, and G. R. Fleming, J. Chem. Phys. 78, 6455 (1983).
[CrossRef]

J. Mol. Biol. (1)

T. Samejima and J. T. Yang, J. Mol. Biol. 8, 863 (1964).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (7)

J. Phys. Chem. (3)

D. H. Waldeck and G. R. Fleming, J. Phys. Chem. 85, 2614 (1981).
[CrossRef]

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, J. D. Kumtz, and D. S. Kliger, J. Phys. Chem.,  89, 289 (1985).
[CrossRef]

C. M. Einterz, J. W. Lewis, S. J. Milder, and D. S. Kliger, J. Phys. Chem. 89, 3845 (1985).
[CrossRef]

J. Phys. E (1)

A. F. Drake, J. Phys. E 30, 170 (1986).
[CrossRef]

Opt. Commun. (1)

X. Xie and J. D. Simon, Opt. Commun. 69, 303 (1989).
[CrossRef]

Proc. Natl. Acad. Sci. (USA) (1)

S. R. Simon and C. R. Cantor, Proc. Natl. Acad. Sci. (USA) 63, 205 (1969).
[CrossRef]

Rev. Chem. Intermed. (1)

D. S. Kliger and J. W. Lewis, Rev. Chem. Intermed. 8, 367 (1987).
[CrossRef]

Rev. Sci. Instrum. (2)

X. Xie and J. D. Simon, Rev. Sci. Instrum. 60, 2614 (1989).
[CrossRef]

F. A. Ferrone, J. J. Hopfield, and S. E. Schnatterly, Rev. Sci. Instrum. 45, 1392 (1974).
[CrossRef]

Other (10)

R. Woody, in Biochemical and Clinical Aspects of Hemoglobin Abnormalities, W. S. Caughey, ed. (Adademic, New York, 1978).

D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, Orlando, Fla., 1990).

S. B. Piepho and P. N. Schatz, Group Theory in Spectroscopy, with Applications to Magnetic Circular Dichroism (Wiley, New York, 1983).

G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford U. Press, Oxford, 1986).

J. A. Schellman, in Polarization Spectroscopy of Ordered Systems, B. Samori and E. W. Thulstrup, eds. (Kluwer, Hingham, Mass., 1988).

J. Michl and E. Thulstrup, Spectroscopy with Polarized Light (VCH, New York, 1986).

See for example C. R. Cantor and P. R. Schimmel, Biophysical Chemistry (Freeman, New York, 1980).

X. Xie and J. D. Simon, “Time-resolved dichroism and absorption studies of protein relaxation following photo-chemical elimination of CO from carbonmonoxy myoglobin,” submitted to Biochemistry.

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin,” submitted to J. Am. Chem. Soc.

X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: experiment, theory, and applications to protein dynamics,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. Lakowitz, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1204, 66 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the optical arrangement used to measure time-resolved CD data: PC, Pockels cell; Q, quarter-wave plate or depolarizer; RHP, rotating half-wave plate; S, sample cell; P, polarizer; PMT, photomultiplier tube, A/D, analog-to-digital converter.

Fig. 2
Fig. 2

The effect of linear dichroism on the CD signal is evaluated. The limiting expressions, Eq. (36) (solid line) and (37) (dashed curve), are compared with the N-matrix result, Eq. (46) (dotted–dashed curve). In calculating these curve, AL = 5.0, ALAR = 0.001, Ax = 5.0, and g = 0. All curves are normalized to 1. The plotted curves show that the LD of the sample reduces the observed signal. The N-matrix calculation results in a curve that is intermediate between the two limiting cases.

Fig. 3
Fig. 3

Illustration of the effects of imperfectly modulated light and pump-induced linear dichroism. The left (or right) elliptically polarized light can be viewed as composed of a circular and a linear component. The two perpendicular linear components probe the linear dichroism induced by the pump beam and result in an additional signal at the modulation frequency.

Fig. 4
Fig. 4

The combined effect of the external birefringence of the optics and the pump-induced linear birefringence and linear dichroism of the sample on the measured signal is examined as a function of the magnitude of the pump-induced linear dichroism. Equations (48) (solid curve), (49) (dotted curve), and (18) (dashed line) are plotted. All curves are normalized to Eq. (18). The parameters used are AL = 5, AR = 4.999, Ax = 5.0, b = 1°, θ = 20°, and p = 5°. These results show that a small amount of pump-induced LD can result in a large distortion of the data. The value of the true CD signal is given by the dashed line.

Fig. 5
Fig. 5

An example of the experimental signal as a function of delay time is shown for the N band of Mb following photodissociation of CO from MbCO by using a linearly polarized pump beam. The signal shows a two-component change in the experimental signal. Comparison with theoretical calculations indicates that the data reflect dynamics caused by changes in both the CD of the sample and the pump-induced linear dichroism.

Fig. 6
Fig. 6

Simulation of time-dependent signals using the time-dependent analog of Eq. (48). The linear and circular dichroism signals were assumed to relax exponentially with time constants of 1 nsec and 50 psec, respectively. The parameters used were AL = 5.0, AR = 4.995, Ax = 5.0, Ay = 4.95, b = 1°; 0 = 0° (solid curve), =20° (dotted curve), =45° (dashed curve), =−20° (single-dotted–dashed curve), =−45° (double-dotted–dashed curve).

Fig. 7
Fig. 7

The CD value at 355 nm is plotted as a function of time following excitation of MbCO by 532-nm light. The polarization of the photolysis light was modulated with a spinning half-wave plate, removing contributions of pump-induced LD and LB to the signal detected at the 500-Hz modulation frequency. Within the signal-to-noise ratio shown, the data suggest that the confirmational relaxation in Mb following ligand dissociation occurs within 100 psec of photolysis. The dashed curve is a measure of the transient absorption dynamics, indicating the instrument response function.

Equations (60)

Equations on this page are rendered with MathJax. Learn more.

J = [ E x E y ] = [ E x 0 exp [ i ( ω t + ϕ x ) ] E y 0 exp [ i ( ω t + ϕ y ) ] ] ,
J L = [ E 0 exp ( i π 2 ) E 0 ] , J R = [ E 0 exp ( i π 2 ) E 0 ] ,
[ circular dichroism ] × [ linear birefringence ] × J L
[ circular dichroism ] × [ linear birefringence ] × J R .
N = ( d M / d z ) M 1 ,
M = e N z .
N = [ n 1 n 4 n 3 n 2 ] ,
M = exp T z × [ m 1 m 4 m 3 m 2 ] ,
T = ( n 1 + n 2 ) / 2 ,
Q = [ 1 4 ( n 1 n 2 ) 2 + n 3 n 4 ] 1 / 2 ,
m 1 = cosh ( Q z ) + 1 2 Q ( n 1 n 2 ) sinh ( Q z ) ,
m 2 = cosh ( Q z ) 1 2 Q ( n 1 n 2 ) sinh ( Q z ) ,
m 3 = 1 Q n 3 sinh ( Q z ) ,
m 4 = 1 Q n 4 sinh ( Q z ) ,
Δ A = ( Δ ε ) c l = log ( I R / I 0 ) log ( I L / I 0 ) = log ( I R ) log ( I L ) = Δ log ( I ) Δ I 2.303 × I .
E L 2 E R 2 E L 2 + E R 2 .
M CD = 1 2 [ k + k i ( k k ) i ( k k ) k + k ] ,
E L 2 E R 2 E L 2 + E R 2 = k 2 k 2 k 2 + k 2 .
M CB = [ cos ( δ z ) sin ( δ z ) sin ( δ z ) cos ( δ z ) ] ,
N CB = δ [ 0 1 1 0 ] ,
N CD = 0.575 c [ ε L + ε R i ( ε L ε R ) i ( ε L ε R ) ε L + ε R ] .
Q = γ i δ ,
T = 0.575 ( ε L + ε R ) ,
M CD , CB = e T z [ cosh [ ( γ i δ ) z ] i sinh [ ( γ i δ ) z ] i sinh [ ( γ i δ ) z ] cosh [ ( γ i δ ) z ] ] .
E L 2 E R 2 E L 2 + E R 2 = e 2 γ z e 2 γ z e 2 γ z + e 2 γ z k 2 k 2 k 2 + k 2 .
M LB = [ cos 2 θ e i b + sin 2 θ e i b i sin 2 θ sin b i sin 2 θ sin b cos 2 θ e i b + sin 2 θ e i b ] .
E L 2 E R 2 E L 2 + E R 2 = k 2 k 2 k 2 + k 2 cos 2 b .
M LB ( θ = 45 ° ) = [ cos b i sin b i sin b cos b ] .
[ E x E y ] = [ E 0 ( cos b + sin b ) exp [ i ( ω t + π 2 ) ] E 0 ( cos b sin b ) exp ( i ω t ) ] .
[ E x ( cos b + sin b ) E 0 ] 2 + [ E y ( cos b sin b ) E 0 ] 2 = 1.
[ E x ( cos b sin b ) E 0 ] 2 + [ E y ( cos b + sin b ) E 0 ] 2 = 1 ,
[ cos α ± i sin α ± i sin α cos α ] × [ 1 0 ] = [ cos α ± i sin α ] ,
E L 2 E R 2 E L 2 + E R 2 = k 2 k 2 k 2 + k 2 sin 2 α .
M LD = [ m 0 0 m ] ,
M LB = [ e i ρ 0 0 e i ρ ] ,
E L 2 E R 2 E L 2 + E R 2 = k 2 k 2 k 2 + k 2 .
E L 2 E R 2 E L 2 + E R 2 = k 2 k 2 k 2 + k 2 2 m m m 2 + m 2 cos 2 ρ .
N CD = 0.575 c [ ε R + ε L i ( ε L ε R ) i ( ε L ε R ) ( ε R + ε L ) ] ,
N LD = 11.5 c [ ε x 0 0 ε y ] ,
N LB = g [ i 0 0 i ] .
γ = 0.575 c ( ε L ε R ) ,
β = 0.575 c ( ε x ε y ) .
Q = ( β 2 + γ 2 g 2 2 i g β ) 1 / 2
T = 0.575 c ( ε R + ε L ) 0.575 c ( ε x + ε y ) .
M LB , LD , CD = e T z [ cosh ( Q z ) 1 Q ( β i g ) sinh ( Q z ) 1 Q i γ sinh ( Q z ) 1 Q i γ sinh ( Q z ) cosh ( Q z ) + 1 Q ( β i g ) sinh ( Q z ) ] .
E L 2 E R 2 E L 2 + E R 2 = γ [ Q cosh ( Q z ) sinh ( Q ¯ z ) + Q ¯ sinh ( Q z ) cosh ( Q ¯ z ) ] Q Q ¯ cosh ( Q z ) cosh ( Q ¯ z ) + ( g 2 + β 2 + γ 2 ) sinh ( Q z ) sinh ( Q ¯ z ) .
E L 2 E R 2 E L 2 + E R 2 = 2 sinh ( γ z ) cosh ( γ z ) sinh 2 ( γ z ) + cosh 2 ( γ z ) = k 2 k 2 k 2 + k 2 .
E L 2 E R 2 E L 2 + E R 2 = k 2 k 2 k 2 + k 2 cos 2 b + m 2 m 2 m 2 + m 2 × 2 k k 2 k 2 + k 2 sin 2 θ sin 2 b .
E L 2 E R 2 E L 2 + E R 2 = 2 m m m 2 + m 2 k 2 k 2 k 2 + k 2 × ( cos 2 ρ cos 2 b + sin 2 ρ sin 2 b cos 2 θ ) + m 2 m 2 m 2 + m 2 sin 2 θ sin 2 b .
E L 2 ( t ) E R 2 ( t ) E L 2 ( t ) + E R 2 ( t ) = k 2 ( t ) k 2 ( t ) k 2 ( t ) + k 2 ( t ) cos 2 b exp ( t / τ CD ) cos 2 b .
k 2 k 2 k 2 + k 2 cos 2 b E L 2 E R 2 E L 2 + E R 2 k 2 k 2 k 2 + k 2 2 m m m 2 + m 2 cos 2 ρ cos 2 b .
E L 2 E R 2 E L 2 E R 2 = γ [ Q cosh ( Q z ) sinh ( Q ¯ z ) + Q ¯ sinh ( Q z ) cosh ( Q ¯ z ) Q Q ¯ cosh ( Q z ) cosh ( Q ¯ z ) + ( g 2 + β 2 + γ 2 ) sinh ( Q z ) sinh ( Q ¯ z ) f ( θ , b ) Q ¯ ( β i g ) sinh ( Q z ) cosh ( Q ¯ z ) + Q ( β + i g ) sinh ( Q ¯ z ) cosh ( Q z ) Q Q ¯ cosh ( Q z ) cosh ( Q ¯ z ) × ( g 2 + β 2 + γ 2 ) sinh ( Q z ) sinh ( Q ¯ z ) g ( θ , b ) 2 γ g sinh ( Q ¯ z ) sinh ( Q z ) Q Q ¯ cosh ( Q z ) cosh ( Q ¯ z ) + ( g 2 + β 2 + γ 2 ) sinh ( Q z ) sinh ( Q ¯ z ) h ( θ , b ) ,
f ( θ , b ) = 1 2 [ cos 2 b ( cos 4 θ + 1 ) cos 4 θ + 1 ] ,
g ( θ , b ) = sin 2 θ sin 2 b ,
h ( θ , b ) = cos 2 θ sin 2 b .
I L = I L x + I L y = ( I L x ) 0 10 A x + ( I L y ) 0 10 A y
I R = I R x + I R y = ( I R x ) 0 10 A x + ( I R y ) 0 10 A y ,
Δ A = Δ I 2.303 × I = I L I R 2.303 × ( I L + I R ) / 2 .
( I L x ) 0 ( I L y ) 0 = 9 10 , ( I R x ) 0 ( I R y ) 0 = 10 9 .
Δ A = | 10 A x 10 A y | 2.303 × 19 × ( 10 A x + 10 A y ) / 2 | A x A y | 19 .

Metrics