Abstract

Four-wave mixing techniques are used to produce laser-induced gratings in Pr3+-doped silicate glasses for the first time to our knowledge. The characteristics of the laser-induced grating are investigated and compared with those found in Eu3+-doped silicate glasses. An attempt to form a laser-induced grating in an Er3+-doped silicate glass was made. Under excitation conditions similar to those in previous experiments, no laser-induced grating could be produced. Differences between the samples are discussed in terms of high-energy phonons, which are emitted when the rare-earth ion relaxes nonradiatively. Temperature dependences of the laser-induced grating signal intensity are investigated in Eu3+-doped silicate glasses, and the results are compared with theoretical predictions.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. G. Behrens, F. M. Durville, R. C. Powell, Opt. Lett. 11, 653 (1986).
    [CrossRef] [PubMed]
  2. F. M. Durville, E. G. Behrens, R. C. Powell, Phys. Rev. B 34, 4213 (1986).
    [CrossRef]
  3. P. Gunter, Phys. Rep. 93, 199 (1982).
    [CrossRef]
  4. A. Winnacker, R. M. Shelby, R. M. Macfarlane, Opt. Lett. 10, 350 (1985).
    [CrossRef] [PubMed]
  5. R. M. Macfarlane, R. M. Shelby, in Coherence and Energy Transfer in Glasses, P. A. Fluery, G. Golding, eds. (Plenum, New York, 1984).
  6. L. G. DeShazer, Solidlite, Suite 224, 16150 NE 85th Street, Redmond, Washington 98052-3529 (personal communication).
  7. C. L. Sauer, PhD dissertation (University of Southern California, Los Angeles, Calif., 1980).
  8. C. Layne, W. H. Lowdermilk, M. J. Weber, Phys. Rev. B 16, 10 (1977).
    [CrossRef]
  9. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
    [CrossRef]
  10. J. Feinberg, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 417.
    [CrossRef]
  11. E. G. Behrens, F. M. Durville, R. C. Powell, D. H. Blackburn, Phys. Rev. B. 39, 6076 (1989).
    [CrossRef]
  12. F. M. Durville, E. G. Behrens, R. C. Powell, Phys. Rev. B 35, 4109 (1987).
    [CrossRef]
  13. R. C. Powell, S. A. Payne, L. L. Chase, G. D. Wilke, “Four-wave mixing of Nd3+-doped crystals and glasses,” Phys. Rev. B (to be published).

1989 (1)

E. G. Behrens, F. M. Durville, R. C. Powell, D. H. Blackburn, Phys. Rev. B. 39, 6076 (1989).
[CrossRef]

1987 (1)

F. M. Durville, E. G. Behrens, R. C. Powell, Phys. Rev. B 35, 4109 (1987).
[CrossRef]

1986 (2)

F. M. Durville, E. G. Behrens, R. C. Powell, Phys. Rev. B 34, 4213 (1986).
[CrossRef]

E. G. Behrens, F. M. Durville, R. C. Powell, Opt. Lett. 11, 653 (1986).
[CrossRef] [PubMed]

1985 (1)

1982 (1)

P. Gunter, Phys. Rep. 93, 199 (1982).
[CrossRef]

1977 (1)

C. Layne, W. H. Lowdermilk, M. J. Weber, Phys. Rev. B 16, 10 (1977).
[CrossRef]

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Behrens, E. G.

E. G. Behrens, F. M. Durville, R. C. Powell, D. H. Blackburn, Phys. Rev. B. 39, 6076 (1989).
[CrossRef]

F. M. Durville, E. G. Behrens, R. C. Powell, Phys. Rev. B 35, 4109 (1987).
[CrossRef]

E. G. Behrens, F. M. Durville, R. C. Powell, Opt. Lett. 11, 653 (1986).
[CrossRef] [PubMed]

F. M. Durville, E. G. Behrens, R. C. Powell, Phys. Rev. B 34, 4213 (1986).
[CrossRef]

Blackburn, D. H.

E. G. Behrens, F. M. Durville, R. C. Powell, D. H. Blackburn, Phys. Rev. B. 39, 6076 (1989).
[CrossRef]

Chase, L. L.

R. C. Powell, S. A. Payne, L. L. Chase, G. D. Wilke, “Four-wave mixing of Nd3+-doped crystals and glasses,” Phys. Rev. B (to be published).

DeShazer, L. G.

L. G. DeShazer, Solidlite, Suite 224, 16150 NE 85th Street, Redmond, Washington 98052-3529 (personal communication).

Durville, F. M.

E. G. Behrens, F. M. Durville, R. C. Powell, D. H. Blackburn, Phys. Rev. B. 39, 6076 (1989).
[CrossRef]

F. M. Durville, E. G. Behrens, R. C. Powell, Phys. Rev. B 35, 4109 (1987).
[CrossRef]

E. G. Behrens, F. M. Durville, R. C. Powell, Opt. Lett. 11, 653 (1986).
[CrossRef] [PubMed]

F. M. Durville, E. G. Behrens, R. C. Powell, Phys. Rev. B 34, 4213 (1986).
[CrossRef]

Feinberg, J.

J. Feinberg, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 417.
[CrossRef]

Gunter, P.

P. Gunter, Phys. Rep. 93, 199 (1982).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Layne, C.

C. Layne, W. H. Lowdermilk, M. J. Weber, Phys. Rev. B 16, 10 (1977).
[CrossRef]

Lowdermilk, W. H.

C. Layne, W. H. Lowdermilk, M. J. Weber, Phys. Rev. B 16, 10 (1977).
[CrossRef]

Macfarlane, R. M.

A. Winnacker, R. M. Shelby, R. M. Macfarlane, Opt. Lett. 10, 350 (1985).
[CrossRef] [PubMed]

R. M. Macfarlane, R. M. Shelby, in Coherence and Energy Transfer in Glasses, P. A. Fluery, G. Golding, eds. (Plenum, New York, 1984).

Payne, S. A.

R. C. Powell, S. A. Payne, L. L. Chase, G. D. Wilke, “Four-wave mixing of Nd3+-doped crystals and glasses,” Phys. Rev. B (to be published).

Powell, R. C.

E. G. Behrens, F. M. Durville, R. C. Powell, D. H. Blackburn, Phys. Rev. B. 39, 6076 (1989).
[CrossRef]

F. M. Durville, E. G. Behrens, R. C. Powell, Phys. Rev. B 35, 4109 (1987).
[CrossRef]

E. G. Behrens, F. M. Durville, R. C. Powell, Opt. Lett. 11, 653 (1986).
[CrossRef] [PubMed]

F. M. Durville, E. G. Behrens, R. C. Powell, Phys. Rev. B 34, 4213 (1986).
[CrossRef]

R. C. Powell, S. A. Payne, L. L. Chase, G. D. Wilke, “Four-wave mixing of Nd3+-doped crystals and glasses,” Phys. Rev. B (to be published).

Sauer, C. L.

C. L. Sauer, PhD dissertation (University of Southern California, Los Angeles, Calif., 1980).

Shelby, R. M.

A. Winnacker, R. M. Shelby, R. M. Macfarlane, Opt. Lett. 10, 350 (1985).
[CrossRef] [PubMed]

R. M. Macfarlane, R. M. Shelby, in Coherence and Energy Transfer in Glasses, P. A. Fluery, G. Golding, eds. (Plenum, New York, 1984).

Weber, M. J.

C. Layne, W. H. Lowdermilk, M. J. Weber, Phys. Rev. B 16, 10 (1977).
[CrossRef]

Wilke, G. D.

R. C. Powell, S. A. Payne, L. L. Chase, G. D. Wilke, “Four-wave mixing of Nd3+-doped crystals and glasses,” Phys. Rev. B (to be published).

Winnacker, A.

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
[CrossRef]

Opt. Lett. (2)

Phys. Rep. (1)

P. Gunter, Phys. Rep. 93, 199 (1982).
[CrossRef]

Phys. Rev. B (3)

F. M. Durville, E. G. Behrens, R. C. Powell, Phys. Rev. B 34, 4213 (1986).
[CrossRef]

C. Layne, W. H. Lowdermilk, M. J. Weber, Phys. Rev. B 16, 10 (1977).
[CrossRef]

F. M. Durville, E. G. Behrens, R. C. Powell, Phys. Rev. B 35, 4109 (1987).
[CrossRef]

Phys. Rev. B. (1)

E. G. Behrens, F. M. Durville, R. C. Powell, D. H. Blackburn, Phys. Rev. B. 39, 6076 (1989).
[CrossRef]

Other (5)

R. C. Powell, S. A. Payne, L. L. Chase, G. D. Wilke, “Four-wave mixing of Nd3+-doped crystals and glasses,” Phys. Rev. B (to be published).

J. Feinberg, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 417.
[CrossRef]

R. M. Macfarlane, R. M. Shelby, in Coherence and Energy Transfer in Glasses, P. A. Fluery, G. Golding, eds. (Plenum, New York, 1984).

L. G. DeShazer, Solidlite, Suite 224, 16150 NE 85th Street, Redmond, Washington 98052-3529 (personal communication).

C. L. Sauer, PhD dissertation (University of Southern California, Los Angeles, Calif., 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Partial energy-level diagram for several trivalent rare-earth ions.

Fig. 2
Fig. 2

LIG signal intensity as a function of write-beam crossing angle 2θ in the Pr3+ sample.

Fig. 3
Fig. 3

LIG signal intensity as a function of the total laser write-beam power in the Pr3+ sample. The solid and dashed lines are discussed in the text.

Fig. 4
Fig. 4

Build-up time and erase time of the permanent LIG as a function of the total laser write-beam power in the Pr3+ sample.

Fig. 5
Fig. 5

Temperature dependence of LIG scattering intensity for Pr3+-doped silicate glass. The solid lines are discussed in the text.

Fig. 6
Fig. 6

Room-temperature fluorescence of the Pr3+-doped glass sample after excitation into the 3P0 excited state.

Fig. 7
Fig. 7

Room-temperature fluorescence of the Er3+-doped glass sample after excitation into the 4F7/2 excited state.

Fig. 8
Fig. 8

Temperature dependence of LIG scattering intensity for Eu3+-doped samples: (a) dashed line, CS5; solid line, RS5; dotted line, KS5; (b) solid line, NS5; dashed line, LS5.

Tables (3)

Tables Icon

Table 1 Composition of Eu3+-Doped Alkali-Metal Glasses

Tables Icon

Table 2 Activation Energies of Eu3+-Doped Alkali-Metal Glasses

Tables Icon

Table 3 Activation Energies and Asymmetries of Eu3+-Deped Alkali-Metal Glasses

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Λ = n λ W / 2 sin 2 θ .
n λ P = 2 Λ sin Φ ,
I S = | n | 2 .
I S ( t ) = I 0 exp ( 2 t / τ f ) ,
I S = | Δ n T | 2 exp ( 2 t / τ ) + 2 | Δ n T | | Δ n P | exp ( t / τ ) + | Δ n P | 2 ,
η = P S / P P ,
I = | N II P ( ) Δ n II I | 2 ,
N II P ( ) = N I P ( ) ( ν I / ν II ) exp ( Δ e / k T ) ,
I = n I 2 ( ) Δ n 2 II I ( ν I / ν II ) 2 exp ( 2 Δ e / k T ) .
η eff = | Δ n II I | 2 ( 1 + ( ν II / ν I ) exp { [ ћ ( k / m ) 1 / 2 ( k B T tan θ ) 1 ] × exp [ d ( 2 m V 0 / ћ 2 ) 1 / 2 ] } ) 2 ,
Δ e = ( ћ k 1 / 2 / tan θ m 1 / 2 ) exp [ d ( 2 m V 0 / ћ 2 ) 1 / 2 ] .
η Q . E . = Δ η / Φ ,

Metrics