Abstract

We present a detailed experimental characterization of an optical storage technique that uses monodomain films of liquid-crystalline polymers (LCP’s). This technique employs the trans–cis isomerization of cyanoazobenzene mesogenic groups of the LCP’s, which is photoinduced in the glassy state. Changes in the molecular geometry leading to nonmesogen moieties and to a reorientation of the optical axis were found to be responsible for the observed strong variations of the anisotropic optical properties. These variations were characterized by means of UV–visible spectroscopy with polarized light. The optically induced trans–cis isomerizations as well as the complete thermal relaxation back to the trans state were found to be similar to those for amorphous polymers containing azobenzene-type groups. However, permanent changes were observed in the irradiated LCP monodomains. An altered orientational distribution in the illuminated area is responsible for the observed long-time stability. The original uniform orientational order of the LCP monodomains could be fully restored by annealing the samples well above the glass-transition temperatures of the polymers. Laser-induced grating experiments were performed to characterize the formation of a periodic modulation of the anisotropic refractive index as a function of time and intensity. A kinetic model that describes the grating formation due to the isomerization reaction is introduced and experimentally confirmed. A very high resolving power (3000 lines/mm) combined with large diffraction efficiencies (50%) could be achieved. Finally, the first hologram reversibly stored in a LCP is presented as practical example. Such a hologram has already lasted for more than two years at ambient.

© 1990 Optical Society of America

Full Article  |  PDF Article
Related Articles
Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain

Zouheir Sekkat, Jonathan Wood, Emil F. Aust, Wolfgang Knoll, Willi Volksen, and Robert D. Miller
J. Opt. Soc. Am. B 13(8) 1713-1724 (1996)

Quantum theory and experimental studies of absorption spectra and photoisomerization of azobenzene polymers

Thomas Garm Pedersen, P. S. Ramanujam, Per Michael Johansen, and Søren Hvilsted
J. Opt. Soc. Am. B 15(11) 2721-2730 (1998)

References

  • View by:
  • |
  • |
  • |

  1. M. Hartmann, B. A. J. Jakobs, and J. J. M. Braat, “Erasable magneto-optical recording,” Philips Tech. Rev. 42, 37 (1985).
  2. D. J. Gravesteijn, C. J. van der Poel, P. M. L. O. Scholte, and C. M. J. van Uijen, “Phase change optical recording,” Philips Tech. Rev. 44, 250 (1987).
  3. H. Finkelmann, H. Ringsdorf, and J. H. Wendorff, “Model considerations and examples of enantiotropic liquid crystalline polymers,” Makromol. Chem. 179, 273 (1978).
    [Crossref]
  4. H. J. Coles and R. Simon, “High resolution laser addressed liquid crystalline storage display,” Polymer 26, 1801 (1985).
    [Crossref]
  5. V. P. Shibaev, S. G. Kostromin, N. A. Plate, S. A. Ivanov, V. Yu. Vetrov, and I. A. Yakolev, “Thermotropic liquid crystalline polymers: 14: Thermorecording on liquid crystalline polymers with the aid of a laser beam,” Polymer Commun. 24, 364 (1983).
  6. M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” presented at 16th Freiburger Arbeitstagung Flüssigkristalle, 1986.
  7. M. Eich, B. Reck, H. Ringsdorf, and J. H. Wendorff, “Reversible digital and holographic storage in polymeric liquid crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 682, 93 (1986).
  8. M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem. 8, 467 (1987).
  9. H. J. Eichler, P. Günter, and D. W. Pohl, eds., Laser Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
    [Crossref]
  10. H. Ringsdorf and H. W. Schmidt, “Electro-optical effects of azo-dye containing liquid crystalline polymers,” Makromol. Chem. 185, 1327 (1984).
    [Crossref]
  11. H. W. Schmidt, Ph.D. dissertation (Johannes Gutenberg Universität, Mainz, 1984).
  12. J. Fabian and H. Hartmann, eds., Light Absorption in Organic Colorants (Springer-Verlag, Berlin, 1980).
    [Crossref]
  13. H. Rau, “Spektroskopische Eigenschaften organischer Azoverbindungen,” Angew. Chem. 85, 248 (1973).
    [Crossref]
  14. G. Zimmermann, L. Chow, and U. Paik, “The photochemical isomerization of azobenzene,” J. Am. Chem. Soc. 80, 3528 (1958).
    [Crossref]
  15. W. E. Haas, K. F. Nelson, J. E. Adams, and G. A. Dir, “UV-imaging with nematic chlorostilbenes,” J. Electrochem. Soc. 121, 1667 (1974).
    [Crossref]
  16. C. Leier and G. Pelzl, J. Prakt. Chem. 321, 197 (1979).
    [Crossref]
  17. S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase transition temperature and giant optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).
  18. G. Smets, Photochromic Phenomena in the Solid Phase, Vol. 50 of Advances in Polymer Science (Springer-Verlag, Berlin, 1983).
  19. M. Irie and W. Schnabel, “Photoresponsive polymers: on the dynamics of conformational changes of polyamides with backbone azobenzene groups,” Macromolecules 14, 1246 (1981).
    [Crossref]
  20. L. Lamarre and C. S. P. Sung, “Studies on physical aging and molecular motion by azochromophoric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729 (1983).
    [Crossref]
  21. C. D. Eisenbach, “Effect of polymer matrix on the cis-trans isomerization of azobenzene residues in bulk polymers,” Makromol. Chem. 179, 2489 (1978).
    [Crossref]
  22. C. D. Eisenbach, “Isomerization of aromatic azo-chromophores in poly (ethyl acrylate) networks and photomechanical effect,” Polymer 21, 1175 (1980).
    [Crossref]
  23. T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical alignment regulations of a nematic liquid crystal by Langmuir–Blodgett layers of azobenzene containing polymers as command surfaces,” Macromolecules 22, 3506 (1989).
    [Crossref]
  24. H. Stegemeyer, “On the mechanism of photochemical cis–trans isomerization,” J. Phys. Chem. 66, 2555 (1962).
    [Crossref]
  25. M. Eich, “Polymere Flüssigkristalle: Eigenschaften von Monodomänen,” Ph.D. dissertation (Technical University, Darmstadt, 1987).
  26. J. D. Webb, H. H. Neidlinger, and J. S. Connolly, “An infrared study of azobenzene photoisomerization in a polymer matrix,” Polym. Photochem. 7, 503 (1986).
    [Crossref]
  27. C. S. Paik and H. Morawetz, “Photochemical and thermal isomerization of azoaromatic residues in the side chains and the backbone of polymers in bulk,” Macromolecules 5, 171 (1972).
    [Crossref]
  28. K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser induced reorientation of the optical axis in liquid crystalline side chain polymers,” Makromol. Chem. Rapid Commun. 10, 477 (1989).
    [Crossref]

1989 (2)

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical alignment regulations of a nematic liquid crystal by Langmuir–Blodgett layers of azobenzene containing polymers as command surfaces,” Macromolecules 22, 3506 (1989).
[Crossref]

K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser induced reorientation of the optical axis in liquid crystalline side chain polymers,” Makromol. Chem. Rapid Commun. 10, 477 (1989).
[Crossref]

1987 (2)

D. J. Gravesteijn, C. J. van der Poel, P. M. L. O. Scholte, and C. M. J. van Uijen, “Phase change optical recording,” Philips Tech. Rev. 44, 250 (1987).

M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem. 8, 467 (1987).

1986 (2)

M. Eich, B. Reck, H. Ringsdorf, and J. H. Wendorff, “Reversible digital and holographic storage in polymeric liquid crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 682, 93 (1986).

J. D. Webb, H. H. Neidlinger, and J. S. Connolly, “An infrared study of azobenzene photoisomerization in a polymer matrix,” Polym. Photochem. 7, 503 (1986).
[Crossref]

1985 (2)

M. Hartmann, B. A. J. Jakobs, and J. J. M. Braat, “Erasable magneto-optical recording,” Philips Tech. Rev. 42, 37 (1985).

H. J. Coles and R. Simon, “High resolution laser addressed liquid crystalline storage display,” Polymer 26, 1801 (1985).
[Crossref]

1984 (1)

H. Ringsdorf and H. W. Schmidt, “Electro-optical effects of azo-dye containing liquid crystalline polymers,” Makromol. Chem. 185, 1327 (1984).
[Crossref]

1983 (3)

V. P. Shibaev, S. G. Kostromin, N. A. Plate, S. A. Ivanov, V. Yu. Vetrov, and I. A. Yakolev, “Thermotropic liquid crystalline polymers: 14: Thermorecording on liquid crystalline polymers with the aid of a laser beam,” Polymer Commun. 24, 364 (1983).

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase transition temperature and giant optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).

L. Lamarre and C. S. P. Sung, “Studies on physical aging and molecular motion by azochromophoric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729 (1983).
[Crossref]

1981 (1)

M. Irie and W. Schnabel, “Photoresponsive polymers: on the dynamics of conformational changes of polyamides with backbone azobenzene groups,” Macromolecules 14, 1246 (1981).
[Crossref]

1980 (1)

C. D. Eisenbach, “Isomerization of aromatic azo-chromophores in poly (ethyl acrylate) networks and photomechanical effect,” Polymer 21, 1175 (1980).
[Crossref]

1979 (1)

C. Leier and G. Pelzl, J. Prakt. Chem. 321, 197 (1979).
[Crossref]

1978 (2)

C. D. Eisenbach, “Effect of polymer matrix on the cis-trans isomerization of azobenzene residues in bulk polymers,” Makromol. Chem. 179, 2489 (1978).
[Crossref]

H. Finkelmann, H. Ringsdorf, and J. H. Wendorff, “Model considerations and examples of enantiotropic liquid crystalline polymers,” Makromol. Chem. 179, 273 (1978).
[Crossref]

1974 (1)

W. E. Haas, K. F. Nelson, J. E. Adams, and G. A. Dir, “UV-imaging with nematic chlorostilbenes,” J. Electrochem. Soc. 121, 1667 (1974).
[Crossref]

1973 (1)

H. Rau, “Spektroskopische Eigenschaften organischer Azoverbindungen,” Angew. Chem. 85, 248 (1973).
[Crossref]

1972 (1)

C. S. Paik and H. Morawetz, “Photochemical and thermal isomerization of azoaromatic residues in the side chains and the backbone of polymers in bulk,” Macromolecules 5, 171 (1972).
[Crossref]

1962 (1)

H. Stegemeyer, “On the mechanism of photochemical cis–trans isomerization,” J. Phys. Chem. 66, 2555 (1962).
[Crossref]

1958 (1)

G. Zimmermann, L. Chow, and U. Paik, “The photochemical isomerization of azobenzene,” J. Am. Chem. Soc. 80, 3528 (1958).
[Crossref]

Adams, J. E.

W. E. Haas, K. F. Nelson, J. E. Adams, and G. A. Dir, “UV-imaging with nematic chlorostilbenes,” J. Electrochem. Soc. 121, 1667 (1974).
[Crossref]

Anderle, K.

K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser induced reorientation of the optical axis in liquid crystalline side chain polymers,” Makromol. Chem. Rapid Commun. 10, 477 (1989).
[Crossref]

Aoki, K.

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical alignment regulations of a nematic liquid crystal by Langmuir–Blodgett layers of azobenzene containing polymers as command surfaces,” Macromolecules 22, 3506 (1989).
[Crossref]

Birenheide, R.

K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser induced reorientation of the optical axis in liquid crystalline side chain polymers,” Makromol. Chem. Rapid Commun. 10, 477 (1989).
[Crossref]

Braat, J. J. M.

M. Hartmann, B. A. J. Jakobs, and J. J. M. Braat, “Erasable magneto-optical recording,” Philips Tech. Rev. 42, 37 (1985).

Chow, L.

G. Zimmermann, L. Chow, and U. Paik, “The photochemical isomerization of azobenzene,” J. Am. Chem. Soc. 80, 3528 (1958).
[Crossref]

Coles, H. J.

H. J. Coles and R. Simon, “High resolution laser addressed liquid crystalline storage display,” Polymer 26, 1801 (1985).
[Crossref]

Connolly, J. S.

J. D. Webb, H. H. Neidlinger, and J. S. Connolly, “An infrared study of azobenzene photoisomerization in a polymer matrix,” Polym. Photochem. 7, 503 (1986).
[Crossref]

Dir, G. A.

W. E. Haas, K. F. Nelson, J. E. Adams, and G. A. Dir, “UV-imaging with nematic chlorostilbenes,” J. Electrochem. Soc. 121, 1667 (1974).
[Crossref]

Eich, M.

K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser induced reorientation of the optical axis in liquid crystalline side chain polymers,” Makromol. Chem. Rapid Commun. 10, 477 (1989).
[Crossref]

M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem. 8, 467 (1987).

M. Eich, B. Reck, H. Ringsdorf, and J. H. Wendorff, “Reversible digital and holographic storage in polymeric liquid crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 682, 93 (1986).

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” presented at 16th Freiburger Arbeitstagung Flüssigkristalle, 1986.

M. Eich, “Polymere Flüssigkristalle: Eigenschaften von Monodomänen,” Ph.D. dissertation (Technical University, Darmstadt, 1987).

Eisenbach, C. D.

C. D. Eisenbach, “Isomerization of aromatic azo-chromophores in poly (ethyl acrylate) networks and photomechanical effect,” Polymer 21, 1175 (1980).
[Crossref]

C. D. Eisenbach, “Effect of polymer matrix on the cis-trans isomerization of azobenzene residues in bulk polymers,” Makromol. Chem. 179, 2489 (1978).
[Crossref]

Finkelmann, H.

H. Finkelmann, H. Ringsdorf, and J. H. Wendorff, “Model considerations and examples of enantiotropic liquid crystalline polymers,” Makromol. Chem. 179, 273 (1978).
[Crossref]

Gravesteijn, D. J.

D. J. Gravesteijn, C. J. van der Poel, P. M. L. O. Scholte, and C. M. J. van Uijen, “Phase change optical recording,” Philips Tech. Rev. 44, 250 (1987).

Haas, W. E.

W. E. Haas, K. F. Nelson, J. E. Adams, and G. A. Dir, “UV-imaging with nematic chlorostilbenes,” J. Electrochem. Soc. 121, 1667 (1974).
[Crossref]

Hartmann, M.

M. Hartmann, B. A. J. Jakobs, and J. J. M. Braat, “Erasable magneto-optical recording,” Philips Tech. Rev. 42, 37 (1985).

Ichimura, K.

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical alignment regulations of a nematic liquid crystal by Langmuir–Blodgett layers of azobenzene containing polymers as command surfaces,” Macromolecules 22, 3506 (1989).
[Crossref]

Irie, M.

M. Irie and W. Schnabel, “Photoresponsive polymers: on the dynamics of conformational changes of polyamides with backbone azobenzene groups,” Macromolecules 14, 1246 (1981).
[Crossref]

Ivanov, S. A.

V. P. Shibaev, S. G. Kostromin, N. A. Plate, S. A. Ivanov, V. Yu. Vetrov, and I. A. Yakolev, “Thermotropic liquid crystalline polymers: 14: Thermorecording on liquid crystalline polymers with the aid of a laser beam,” Polymer Commun. 24, 364 (1983).

Jakobs, B. A. J.

M. Hartmann, B. A. J. Jakobs, and J. J. M. Braat, “Erasable magneto-optical recording,” Philips Tech. Rev. 42, 37 (1985).

Kawanishi, Y.

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical alignment regulations of a nematic liquid crystal by Langmuir–Blodgett layers of azobenzene containing polymers as command surfaces,” Macromolecules 22, 3506 (1989).
[Crossref]

Khizhnyak, A. I.

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase transition temperature and giant optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).

Kostromin, S. G.

V. P. Shibaev, S. G. Kostromin, N. A. Plate, S. A. Ivanov, V. Yu. Vetrov, and I. A. Yakolev, “Thermotropic liquid crystalline polymers: 14: Thermorecording on liquid crystalline polymers with the aid of a laser beam,” Polymer Commun. 24, 364 (1983).

Lamarre, L.

L. Lamarre and C. S. P. Sung, “Studies on physical aging and molecular motion by azochromophoric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729 (1983).
[Crossref]

Leier, C.

C. Leier and G. Pelzl, J. Prakt. Chem. 321, 197 (1979).
[Crossref]

Morawetz, H.

C. S. Paik and H. Morawetz, “Photochemical and thermal isomerization of azoaromatic residues in the side chains and the backbone of polymers in bulk,” Macromolecules 5, 171 (1972).
[Crossref]

Neidlinger, H. H.

J. D. Webb, H. H. Neidlinger, and J. S. Connolly, “An infrared study of azobenzene photoisomerization in a polymer matrix,” Polym. Photochem. 7, 503 (1986).
[Crossref]

Nelson, K. F.

W. E. Haas, K. F. Nelson, J. E. Adams, and G. A. Dir, “UV-imaging with nematic chlorostilbenes,” J. Electrochem. Soc. 121, 1667 (1974).
[Crossref]

Odulov, S. G.

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase transition temperature and giant optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).

Paik, C. S.

C. S. Paik and H. Morawetz, “Photochemical and thermal isomerization of azoaromatic residues in the side chains and the backbone of polymers in bulk,” Macromolecules 5, 171 (1972).
[Crossref]

Paik, U.

G. Zimmermann, L. Chow, and U. Paik, “The photochemical isomerization of azobenzene,” J. Am. Chem. Soc. 80, 3528 (1958).
[Crossref]

Pelzl, G.

C. Leier and G. Pelzl, J. Prakt. Chem. 321, 197 (1979).
[Crossref]

Plate, N. A.

V. P. Shibaev, S. G. Kostromin, N. A. Plate, S. A. Ivanov, V. Yu. Vetrov, and I. A. Yakolev, “Thermotropic liquid crystalline polymers: 14: Thermorecording on liquid crystalline polymers with the aid of a laser beam,” Polymer Commun. 24, 364 (1983).

Rau, H.

H. Rau, “Spektroskopische Eigenschaften organischer Azoverbindungen,” Angew. Chem. 85, 248 (1973).
[Crossref]

Reck, B.

M. Eich, B. Reck, H. Ringsdorf, and J. H. Wendorff, “Reversible digital and holographic storage in polymeric liquid crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 682, 93 (1986).

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” presented at 16th Freiburger Arbeitstagung Flüssigkristalle, 1986.

Reznikov, Yu. A.

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase transition temperature and giant optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).

Ringsdorf, H.

M. Eich, B. Reck, H. Ringsdorf, and J. H. Wendorff, “Reversible digital and holographic storage in polymeric liquid crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 682, 93 (1986).

H. Ringsdorf and H. W. Schmidt, “Electro-optical effects of azo-dye containing liquid crystalline polymers,” Makromol. Chem. 185, 1327 (1984).
[Crossref]

H. Finkelmann, H. Ringsdorf, and J. H. Wendorff, “Model considerations and examples of enantiotropic liquid crystalline polymers,” Makromol. Chem. 179, 273 (1978).
[Crossref]

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” presented at 16th Freiburger Arbeitstagung Flüssigkristalle, 1986.

Schmidt, H. W.

H. Ringsdorf and H. W. Schmidt, “Electro-optical effects of azo-dye containing liquid crystalline polymers,” Makromol. Chem. 185, 1327 (1984).
[Crossref]

H. W. Schmidt, Ph.D. dissertation (Johannes Gutenberg Universität, Mainz, 1984).

Schnabel, W.

M. Irie and W. Schnabel, “Photoresponsive polymers: on the dynamics of conformational changes of polyamides with backbone azobenzene groups,” Macromolecules 14, 1246 (1981).
[Crossref]

Scholte, P. M. L. O.

D. J. Gravesteijn, C. J. van der Poel, P. M. L. O. Scholte, and C. M. J. van Uijen, “Phase change optical recording,” Philips Tech. Rev. 44, 250 (1987).

Seki, T.

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical alignment regulations of a nematic liquid crystal by Langmuir–Blodgett layers of azobenzene containing polymers as command surfaces,” Macromolecules 22, 3506 (1989).
[Crossref]

Shibaev, V. P.

V. P. Shibaev, S. G. Kostromin, N. A. Plate, S. A. Ivanov, V. Yu. Vetrov, and I. A. Yakolev, “Thermotropic liquid crystalline polymers: 14: Thermorecording on liquid crystalline polymers with the aid of a laser beam,” Polymer Commun. 24, 364 (1983).

Simon, R.

H. J. Coles and R. Simon, “High resolution laser addressed liquid crystalline storage display,” Polymer 26, 1801 (1985).
[Crossref]

Smets, G.

G. Smets, Photochromic Phenomena in the Solid Phase, Vol. 50 of Advances in Polymer Science (Springer-Verlag, Berlin, 1983).

Soskin, M. S.

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase transition temperature and giant optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).

Stegemeyer, H.

H. Stegemeyer, “On the mechanism of photochemical cis–trans isomerization,” J. Phys. Chem. 66, 2555 (1962).
[Crossref]

Sung, C. S. P.

L. Lamarre and C. S. P. Sung, “Studies on physical aging and molecular motion by azochromophoric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729 (1983).
[Crossref]

Suzuki, Y.

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical alignment regulations of a nematic liquid crystal by Langmuir–Blodgett layers of azobenzene containing polymers as command surfaces,” Macromolecules 22, 3506 (1989).
[Crossref]

Tamaki, T.

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical alignment regulations of a nematic liquid crystal by Langmuir–Blodgett layers of azobenzene containing polymers as command surfaces,” Macromolecules 22, 3506 (1989).
[Crossref]

van der Poel, C. J.

D. J. Gravesteijn, C. J. van der Poel, P. M. L. O. Scholte, and C. M. J. van Uijen, “Phase change optical recording,” Philips Tech. Rev. 44, 250 (1987).

van Uijen, C. M. J.

D. J. Gravesteijn, C. J. van der Poel, P. M. L. O. Scholte, and C. M. J. van Uijen, “Phase change optical recording,” Philips Tech. Rev. 44, 250 (1987).

Vetrov, V. Yu.

V. P. Shibaev, S. G. Kostromin, N. A. Plate, S. A. Ivanov, V. Yu. Vetrov, and I. A. Yakolev, “Thermotropic liquid crystalline polymers: 14: Thermorecording on liquid crystalline polymers with the aid of a laser beam,” Polymer Commun. 24, 364 (1983).

Webb, J. D.

J. D. Webb, H. H. Neidlinger, and J. S. Connolly, “An infrared study of azobenzene photoisomerization in a polymer matrix,” Polym. Photochem. 7, 503 (1986).
[Crossref]

Wendorff, J. H.

K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser induced reorientation of the optical axis in liquid crystalline side chain polymers,” Makromol. Chem. Rapid Commun. 10, 477 (1989).
[Crossref]

M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem. 8, 467 (1987).

M. Eich, B. Reck, H. Ringsdorf, and J. H. Wendorff, “Reversible digital and holographic storage in polymeric liquid crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 682, 93 (1986).

H. Finkelmann, H. Ringsdorf, and J. H. Wendorff, “Model considerations and examples of enantiotropic liquid crystalline polymers,” Makromol. Chem. 179, 273 (1978).
[Crossref]

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” presented at 16th Freiburger Arbeitstagung Flüssigkristalle, 1986.

Yakolev, I. A.

V. P. Shibaev, S. G. Kostromin, N. A. Plate, S. A. Ivanov, V. Yu. Vetrov, and I. A. Yakolev, “Thermotropic liquid crystalline polymers: 14: Thermorecording on liquid crystalline polymers with the aid of a laser beam,” Polymer Commun. 24, 364 (1983).

Zimmermann, G.

G. Zimmermann, L. Chow, and U. Paik, “The photochemical isomerization of azobenzene,” J. Am. Chem. Soc. 80, 3528 (1958).
[Crossref]

Angew. Chem. (1)

H. Rau, “Spektroskopische Eigenschaften organischer Azoverbindungen,” Angew. Chem. 85, 248 (1973).
[Crossref]

J. Am. Chem. Soc. (1)

G. Zimmermann, L. Chow, and U. Paik, “The photochemical isomerization of azobenzene,” J. Am. Chem. Soc. 80, 3528 (1958).
[Crossref]

J. Electrochem. Soc. (1)

W. E. Haas, K. F. Nelson, J. E. Adams, and G. A. Dir, “UV-imaging with nematic chlorostilbenes,” J. Electrochem. Soc. 121, 1667 (1974).
[Crossref]

J. Phys. Chem. (1)

H. Stegemeyer, “On the mechanism of photochemical cis–trans isomerization,” J. Phys. Chem. 66, 2555 (1962).
[Crossref]

J. Prakt. Chem. (1)

C. Leier and G. Pelzl, J. Prakt. Chem. 321, 197 (1979).
[Crossref]

Macromolecules (4)

M. Irie and W. Schnabel, “Photoresponsive polymers: on the dynamics of conformational changes of polyamides with backbone azobenzene groups,” Macromolecules 14, 1246 (1981).
[Crossref]

L. Lamarre and C. S. P. Sung, “Studies on physical aging and molecular motion by azochromophoric labels attached to the main chains of amorphous polymers,” Macromolecules 16, 1729 (1983).
[Crossref]

C. S. Paik and H. Morawetz, “Photochemical and thermal isomerization of azoaromatic residues in the side chains and the backbone of polymers in bulk,” Macromolecules 5, 171 (1972).
[Crossref]

T. Seki, T. Tamaki, Y. Suzuki, Y. Kawanishi, K. Ichimura, and K. Aoki, “Photochemical alignment regulations of a nematic liquid crystal by Langmuir–Blodgett layers of azobenzene containing polymers as command surfaces,” Macromolecules 22, 3506 (1989).
[Crossref]

Makromol. Chem. (4)

H. Ringsdorf and H. W. Schmidt, “Electro-optical effects of azo-dye containing liquid crystalline polymers,” Makromol. Chem. 185, 1327 (1984).
[Crossref]

C. D. Eisenbach, “Effect of polymer matrix on the cis-trans isomerization of azobenzene residues in bulk polymers,” Makromol. Chem. 179, 2489 (1978).
[Crossref]

H. Finkelmann, H. Ringsdorf, and J. H. Wendorff, “Model considerations and examples of enantiotropic liquid crystalline polymers,” Makromol. Chem. 179, 273 (1978).
[Crossref]

M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem. 8, 467 (1987).

Makromol. Chem. Rapid Commun. (1)

K. Anderle, R. Birenheide, M. Eich, and J. H. Wendorff, “Laser induced reorientation of the optical axis in liquid crystalline side chain polymers,” Makromol. Chem. Rapid Commun. 10, 477 (1989).
[Crossref]

Philips Tech. Rev. (2)

M. Hartmann, B. A. J. Jakobs, and J. J. M. Braat, “Erasable magneto-optical recording,” Philips Tech. Rev. 42, 37 (1985).

D. J. Gravesteijn, C. J. van der Poel, P. M. L. O. Scholte, and C. M. J. van Uijen, “Phase change optical recording,” Philips Tech. Rev. 44, 250 (1987).

Polym. Photochem. (1)

J. D. Webb, H. H. Neidlinger, and J. S. Connolly, “An infrared study of azobenzene photoisomerization in a polymer matrix,” Polym. Photochem. 7, 503 (1986).
[Crossref]

Polymer (2)

H. J. Coles and R. Simon, “High resolution laser addressed liquid crystalline storage display,” Polymer 26, 1801 (1985).
[Crossref]

C. D. Eisenbach, “Isomerization of aromatic azo-chromophores in poly (ethyl acrylate) networks and photomechanical effect,” Polymer 21, 1175 (1980).
[Crossref]

Polymer Commun. (1)

V. P. Shibaev, S. G. Kostromin, N. A. Plate, S. A. Ivanov, V. Yu. Vetrov, and I. A. Yakolev, “Thermotropic liquid crystalline polymers: 14: Thermorecording on liquid crystalline polymers with the aid of a laser beam,” Polymer Commun. 24, 364 (1983).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

M. Eich, B. Reck, H. Ringsdorf, and J. H. Wendorff, “Reversible digital and holographic storage in polymeric liquid crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 682, 93 (1986).

Sov. Phys. JETP (1)

S. G. Odulov, Yu. A. Reznikov, M. S. Soskin, and A. I. Khizhnyak, “Photostimulated change of phase transition temperature and giant optical nonlinearity of liquid crystals,” Sov. Phys. JETP 58, 1154 (1983).

Other (6)

G. Smets, Photochromic Phenomena in the Solid Phase, Vol. 50 of Advances in Polymer Science (Springer-Verlag, Berlin, 1983).

M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, “Reversible digital and holographic optical storage in polymeric liquid crystals,” presented at 16th Freiburger Arbeitstagung Flüssigkristalle, 1986.

H. J. Eichler, P. Günter, and D. W. Pohl, eds., Laser Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986).
[Crossref]

H. W. Schmidt, Ph.D. dissertation (Johannes Gutenberg Universität, Mainz, 1984).

J. Fabian and H. Hartmann, eds., Light Absorption in Organic Colorants (Springer-Verlag, Berlin, 1980).
[Crossref]

M. Eich, “Polymere Flüssigkristalle: Eigenschaften von Monodomänen,” Ph.D. dissertation (Technical University, Darmstadt, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Chemical structures of the LCP’s.

Fig. 2
Fig. 2

Polarization micrograph of the partially irradiated (514.5-nm) polymer 100/0 acrylate. The dark region indicates the irradiated area.

Fig. 3
Fig. 3

UV–visible absorption spectra taken from a monodomain of 1/99 acrylate for two orthogonal polarizations at various times after irradiation of the sample with UV light at 360 nm.

Fig. 4
Fig. 4

Optical extinction measured on a monodomain of 1/99 acrylate at 360 nm as a function of the angle between the plane of polarization and the nematic director: outer curve, nonirradiated sample; inner curve, sample irradiated at 360 nm.

Fig. 5
Fig. 5

Extinction as a function of time measured for 370 nm on a monodomain of 1/99 acrylate after irradiation with light of 514.5-cm wavelength (180 mW/cm2, 20 min). (a) Polarization parallel to nematic director, (b) polarization perpendicular to nematic director.

Fig. 6
Fig. 6

Extinction as a function of time measured at 460 nm on a monodomain of 1/99 acrylate after irradiation with light of 514.6-cm wavelength (180 mW/cm2, 20 min). (a) Polarization parallel to nematic director, (b) polarization perpendicular to nematic director.

Fig. 7
Fig. 7

Intensity of the first diffraction order as a function of time, measured during the grating formation in a monodomain of 30/70 acrylate for various writing intensities. The polarizations of the writing beams and of the detection beam were both parallel to the nematic director.

Fig. 8
Fig. 8

Intensity of the zeroth diffraction order as a function of time, measured (a) during and (b) after grating formation in a monodomain of 100/0 polyester for three different writing intensities. The polarizations of the writing and of the detection beams were both parallel to the nematic director. Filled circles, 18 mW/cm2; filled triangles, 45 mW/cm2; filled squares, 180 mW/cm2.

Fig. 9
Fig. 9

Distribution of diffracted intensity in the various diffraction orders for a grating stored in a monodomain of 100/0 polyester: (a) measured directly after the writing step, (b) measured 40 h after the writing step.

Fig. 10
Fig. 10

(a) Schematic three-dimensional view of the spatial intensity distribution of a Gaussian beam, (b) Three-dimensional plot of the diffracted intensity versus the diffraction order and the radial coordinate.

Fig. 11
Fig. 11

First-order diffraction efficiency as a function of spatial frequency, measured in a monodomain of 100/0 acrylate.

Fig. 12
Fig. 12

(a) Object to be recorded, (b) Reconstructed wave from the hologram stored in a LCP monodomain.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

( [ t ] [ c ] ) h υ = ( [ c ] [ t ] ) h υ + ( [ c ] [ t ] ) therm ,
d [ c ] / d t = φ t c I a , t φ c t I a , c ,
[ c ] ( t ) = [ 1 exp ( t / τ ) ] [ c ] ,
τ 1 = φ t c I 0 / [ c ] ,
[ c ] ( t ) = φ c t I 0 t .
[ c ] / ( t ) = α t φ t c α c φ c t = t φ t c c φ c t .
Λ = λ 2 sin ( θ / 2 ) , q = 2 π Λ ,
Q = 2 π d λ Λ 2 n 1 ,
η m = I m / I 0 = const . J m 2 ( Δ ϕ ) ,
δ n [ c ] ( n c n t ) ,
δ n [ 1 exp ( t / τ ) ] [ c ] ( n c n t ) , τ 1 = φ t c [ c ] I w ,
η 1 = I 1 I 0 [ 1 exp ( t / τ ) ] 2 .
η 1 I w 2 t 2 φ t c 2 .

Metrics