Abstract

We make a theoretical analysis of the interaction of the field transmitted by a subwavelength tip and a two-dimensional subwavelength lattice. Such a model provides a new insight into the resolution achievable by near-field microscopy and confirms the experimental results obtained recently. In the present model the probe, characterized by its electric dipolar susceptibility, is assumed to be locally spherical, and the representation of the sample is based on a discrete description of the matter. This permits separation of the electric field detected by the probe after reflection into two different parts that describe both the continuum character and the corrugation of the surface. Numerical results performed on a two-dimensional lattice are similar to those obtained by atomic force microscopy and exhibit specific behavior such as a strong dependence on the polarization of the incident field.

© 1990 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription