Abstract

The transverse modulational instability, or filamentation, of two collinear waves is investigated, using a coupled nonlinear Schrödinger-equation model. For infinite media it is shown that the presence of the second laser field increases the growth rate of the instability and decreases the scale length of the most unstable filaments. Systems of two copropagating waves are shown to be convectively unstable and systems of two counterpropagating waves are shown to be absolutely unstable, even when the ratio of backward- to forward-wave intensity is small. For two counterpropagating waves in finite media, the threshold intensities for the absolute instability depend only weakly on the ratio of wave intensities. The general theory is applied to the pondermotive filamentation of two light waves in homogeneous plasma.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (106)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription