Abstract

All-optical switching schemes employing a signal and a control beam in a waveguide X junction are numerically investigated, using the beam-propagation method. The structures are made from two Y junctions, one asymmetric and one symmetric, connected by a common dual-mode section. A phase-sensitive switching scheme with copropagating beams is compared with other schemes in which the signal and the control beams are mutually incoherent and counterpropagating. In principle the latter schemes permit the routing of a signal with a control beam coming from the user, or output, side of the structure; since the beams are incoherent, the switching behavior is not dependent on the relative phase between the two beams.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. W. Smith, “Femtosecond switching in a dual-core-fiber nonlinear coupler,” Opt. Lett. 13, 904–906 (1988).
    [CrossRef] [PubMed]
  2. S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. QE-18, 1580–1583 (1982).
    [CrossRef]
  3. D. D. Gusovskii, E. M. Dianov, A. A. Maier, V. B. Neustreuv, E. I. Shklovskii, and I. A. Shcherbakov, “Nonlinear light transfer in tunnel-coupled optical waveguides,” Sov. J. Quantum Electron. 15, 1523–1526 (1985).
    [CrossRef]
  4. R. Jin, C. L. Chuang, H. M. Gibbs, S. W. Koch, J. N. Polky, and G. A. Pubanz, “Picosecond all-optical switching in single-mode GaAs/AlGaAs strip-loaded nonlinear directional couplers,” Appl. Phys. Lett. 53, 1791–1793 (1988).
    [CrossRef]
  5. Y. Silberberg and B. G. Sfez, “All-optical phase- and power-controlled switching in nonlinear waveguide junctions,” Opt. Lett. 13, 1132–1134 (1988).
    [CrossRef] [PubMed]
  6. J. P. Sabini, N. Finlayson, and G. I. Stegeman, “All-optical switching in nonlinear X junctions,” Appl. Phys. Lett. 55, 1176–1178 (1989).
    [CrossRef]
  7. J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
    [CrossRef]
  8. M. D. Feit and J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
    [CrossRef] [PubMed]
  9. L. Thylen, “The beam propagation method: an analysis of its applicability,” Opt. Quantum Electron. 15, 433–439 (1983).
    [CrossRef]
  10. A. Neyer, W. Mevenkamp, L. Thylen, and B. Lagerstrom, “A beam propagation method analysis of active and passive waveguide crossings,” IEEE J. Lightwave Technol. LT-3, 635–642 (1985).
    [CrossRef]
  11. W. K. Burns and A. F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. QE-11, 32–39 (1975).
    [CrossRef]
  12. W. K. Burns and A. F. Milton, “An analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
    [CrossRef]
  13. Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett. 51, 1230–1232 (1987).
    [CrossRef]
  14. L. C. Blank and J. D. Cox, “Demonstration of optical drop-and-insert for accessing 2.24 Gbit/s optical transmission systems directly at the 140 Mbit/s level,” presented at the 14th European Conference on Optical Communication, Brighton, England, 1988.
  15. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988).
    [CrossRef]
  16. E. M. Vogel, “Glasses as nonlinear photonic materials,” J. Am. Ceram. Soc. 72, 719–724 (1989).
    [CrossRef]

1989 (2)

J. P. Sabini, N. Finlayson, and G. I. Stegeman, “All-optical switching in nonlinear X junctions,” Appl. Phys. Lett. 55, 1176–1178 (1989).
[CrossRef]

E. M. Vogel, “Glasses as nonlinear photonic materials,” J. Am. Ceram. Soc. 72, 719–724 (1989).
[CrossRef]

1988 (4)

1987 (1)

Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett. 51, 1230–1232 (1987).
[CrossRef]

1985 (2)

A. Neyer, W. Mevenkamp, L. Thylen, and B. Lagerstrom, “A beam propagation method analysis of active and passive waveguide crossings,” IEEE J. Lightwave Technol. LT-3, 635–642 (1985).
[CrossRef]

D. D. Gusovskii, E. M. Dianov, A. A. Maier, V. B. Neustreuv, E. I. Shklovskii, and I. A. Shcherbakov, “Nonlinear light transfer in tunnel-coupled optical waveguides,” Sov. J. Quantum Electron. 15, 1523–1526 (1985).
[CrossRef]

1983 (1)

L. Thylen, “The beam propagation method: an analysis of its applicability,” Opt. Quantum Electron. 15, 433–439 (1983).
[CrossRef]

1982 (1)

S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. QE-18, 1580–1583 (1982).
[CrossRef]

1980 (1)

W. K. Burns and A. F. Milton, “An analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
[CrossRef]

1978 (1)

1976 (1)

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

1975 (1)

W. K. Burns and A. F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. QE-11, 32–39 (1975).
[CrossRef]

Baran, J. E.

Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett. 51, 1230–1232 (1987).
[CrossRef]

Blank, L. C.

L. C. Blank and J. D. Cox, “Demonstration of optical drop-and-insert for accessing 2.24 Gbit/s optical transmission systems directly at the 140 Mbit/s level,” presented at the 14th European Conference on Optical Communication, Brighton, England, 1988.

Burns, W. K.

W. K. Burns and A. F. Milton, “An analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
[CrossRef]

W. K. Burns and A. F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. QE-11, 32–39 (1975).
[CrossRef]

Chuang, C. L.

R. Jin, C. L. Chuang, H. M. Gibbs, S. W. Koch, J. N. Polky, and G. A. Pubanz, “Picosecond all-optical switching in single-mode GaAs/AlGaAs strip-loaded nonlinear directional couplers,” Appl. Phys. Lett. 53, 1791–1793 (1988).
[CrossRef]

Cox, J. D.

L. C. Blank and J. D. Cox, “Demonstration of optical drop-and-insert for accessing 2.24 Gbit/s optical transmission systems directly at the 140 Mbit/s level,” presented at the 14th European Conference on Optical Communication, Brighton, England, 1988.

Dianov, E. M.

D. D. Gusovskii, E. M. Dianov, A. A. Maier, V. B. Neustreuv, E. I. Shklovskii, and I. A. Shcherbakov, “Nonlinear light transfer in tunnel-coupled optical waveguides,” Sov. J. Quantum Electron. 15, 1523–1526 (1985).
[CrossRef]

Feit, M. D.

M. D. Feit and J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
[CrossRef] [PubMed]

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Finlayson, N.

J. P. Sabini, N. Finlayson, and G. I. Stegeman, “All-optical switching in nonlinear X junctions,” Appl. Phys. Lett. 55, 1176–1178 (1989).
[CrossRef]

Fleck, J. A.

M. D. Feit and J. A. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990–3998 (1978).
[CrossRef] [PubMed]

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Friberg, S. R.

Gibbs, H. M.

R. Jin, C. L. Chuang, H. M. Gibbs, S. W. Koch, J. N. Polky, and G. A. Pubanz, “Picosecond all-optical switching in single-mode GaAs/AlGaAs strip-loaded nonlinear directional couplers,” Appl. Phys. Lett. 53, 1791–1793 (1988).
[CrossRef]

Gusovskii, D. D.

D. D. Gusovskii, E. M. Dianov, A. A. Maier, V. B. Neustreuv, E. I. Shklovskii, and I. A. Shcherbakov, “Nonlinear light transfer in tunnel-coupled optical waveguides,” Sov. J. Quantum Electron. 15, 1523–1526 (1985).
[CrossRef]

Heritage, J. P.

Jensen, S. M.

S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. QE-18, 1580–1583 (1982).
[CrossRef]

Jin, R.

R. Jin, C. L. Chuang, H. M. Gibbs, S. W. Koch, J. N. Polky, and G. A. Pubanz, “Picosecond all-optical switching in single-mode GaAs/AlGaAs strip-loaded nonlinear directional couplers,” Appl. Phys. Lett. 53, 1791–1793 (1988).
[CrossRef]

Kirschner, E. M.

Koch, S. W.

R. Jin, C. L. Chuang, H. M. Gibbs, S. W. Koch, J. N. Polky, and G. A. Pubanz, “Picosecond all-optical switching in single-mode GaAs/AlGaAs strip-loaded nonlinear directional couplers,” Appl. Phys. Lett. 53, 1791–1793 (1988).
[CrossRef]

Lagerstrom, B.

A. Neyer, W. Mevenkamp, L. Thylen, and B. Lagerstrom, “A beam propagation method analysis of active and passive waveguide crossings,” IEEE J. Lightwave Technol. LT-3, 635–642 (1985).
[CrossRef]

Maier, A. A.

D. D. Gusovskii, E. M. Dianov, A. A. Maier, V. B. Neustreuv, E. I. Shklovskii, and I. A. Shcherbakov, “Nonlinear light transfer in tunnel-coupled optical waveguides,” Sov. J. Quantum Electron. 15, 1523–1526 (1985).
[CrossRef]

Mevenkamp, W.

A. Neyer, W. Mevenkamp, L. Thylen, and B. Lagerstrom, “A beam propagation method analysis of active and passive waveguide crossings,” IEEE J. Lightwave Technol. LT-3, 635–642 (1985).
[CrossRef]

Milton, A. F.

W. K. Burns and A. F. Milton, “An analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
[CrossRef]

W. K. Burns and A. F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. QE-11, 32–39 (1975).
[CrossRef]

Morris, J. R.

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Neustreuv, V. B.

D. D. Gusovskii, E. M. Dianov, A. A. Maier, V. B. Neustreuv, E. I. Shklovskii, and I. A. Shcherbakov, “Nonlinear light transfer in tunnel-coupled optical waveguides,” Sov. J. Quantum Electron. 15, 1523–1526 (1985).
[CrossRef]

Neyer, A.

A. Neyer, W. Mevenkamp, L. Thylen, and B. Lagerstrom, “A beam propagation method analysis of active and passive waveguide crossings,” IEEE J. Lightwave Technol. LT-3, 635–642 (1985).
[CrossRef]

Perlmutter, P.

Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett. 51, 1230–1232 (1987).
[CrossRef]

Polky, J. N.

R. Jin, C. L. Chuang, H. M. Gibbs, S. W. Koch, J. N. Polky, and G. A. Pubanz, “Picosecond all-optical switching in single-mode GaAs/AlGaAs strip-loaded nonlinear directional couplers,” Appl. Phys. Lett. 53, 1791–1793 (1988).
[CrossRef]

Pubanz, G. A.

R. Jin, C. L. Chuang, H. M. Gibbs, S. W. Koch, J. N. Polky, and G. A. Pubanz, “Picosecond all-optical switching in single-mode GaAs/AlGaAs strip-loaded nonlinear directional couplers,” Appl. Phys. Lett. 53, 1791–1793 (1988).
[CrossRef]

Sabini, J. P.

J. P. Sabini, N. Finlayson, and G. I. Stegeman, “All-optical switching in nonlinear X junctions,” Appl. Phys. Lett. 55, 1176–1178 (1989).
[CrossRef]

Sfez, B. G.

Shcherbakov, I. A.

D. D. Gusovskii, E. M. Dianov, A. A. Maier, V. B. Neustreuv, E. I. Shklovskii, and I. A. Shcherbakov, “Nonlinear light transfer in tunnel-coupled optical waveguides,” Sov. J. Quantum Electron. 15, 1523–1526 (1985).
[CrossRef]

Shklovskii, E. I.

D. D. Gusovskii, E. M. Dianov, A. A. Maier, V. B. Neustreuv, E. I. Shklovskii, and I. A. Shcherbakov, “Nonlinear light transfer in tunnel-coupled optical waveguides,” Sov. J. Quantum Electron. 15, 1523–1526 (1985).
[CrossRef]

Silberberg, Y.

Smith, P. W.

Stegeman, G. I.

J. P. Sabini, N. Finlayson, and G. I. Stegeman, “All-optical switching in nonlinear X junctions,” Appl. Phys. Lett. 55, 1176–1178 (1989).
[CrossRef]

Thylen, L.

A. Neyer, W. Mevenkamp, L. Thylen, and B. Lagerstrom, “A beam propagation method analysis of active and passive waveguide crossings,” IEEE J. Lightwave Technol. LT-3, 635–642 (1985).
[CrossRef]

L. Thylen, “The beam propagation method: an analysis of its applicability,” Opt. Quantum Electron. 15, 433–439 (1983).
[CrossRef]

Vogel, E. M.

E. M. Vogel, “Glasses as nonlinear photonic materials,” J. Am. Ceram. Soc. 72, 719–724 (1989).
[CrossRef]

Weiner, A. M.

Appl. Opt. (1)

Appl. Phys. (1)

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett. 51, 1230–1232 (1987).
[CrossRef]

J. P. Sabini, N. Finlayson, and G. I. Stegeman, “All-optical switching in nonlinear X junctions,” Appl. Phys. Lett. 55, 1176–1178 (1989).
[CrossRef]

R. Jin, C. L. Chuang, H. M. Gibbs, S. W. Koch, J. N. Polky, and G. A. Pubanz, “Picosecond all-optical switching in single-mode GaAs/AlGaAs strip-loaded nonlinear directional couplers,” Appl. Phys. Lett. 53, 1791–1793 (1988).
[CrossRef]

IEEE J. Lightwave Technol. (1)

A. Neyer, W. Mevenkamp, L. Thylen, and B. Lagerstrom, “A beam propagation method analysis of active and passive waveguide crossings,” IEEE J. Lightwave Technol. LT-3, 635–642 (1985).
[CrossRef]

IEEE J. Quantum Electron. (3)

W. K. Burns and A. F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. QE-11, 32–39 (1975).
[CrossRef]

W. K. Burns and A. F. Milton, “An analytic solution for mode coupling in optical waveguide branches,” IEEE J. Quantum Electron. QE-16, 446–454 (1980).
[CrossRef]

S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. QE-18, 1580–1583 (1982).
[CrossRef]

J. Am. Ceram. Soc. (1)

E. M. Vogel, “Glasses as nonlinear photonic materials,” J. Am. Ceram. Soc. 72, 719–724 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

L. Thylen, “The beam propagation method: an analysis of its applicability,” Opt. Quantum Electron. 15, 433–439 (1983).
[CrossRef]

Sov. J. Quantum Electron. (1)

D. D. Gusovskii, E. M. Dianov, A. A. Maier, V. B. Neustreuv, E. I. Shklovskii, and I. A. Shcherbakov, “Nonlinear light transfer in tunnel-coupled optical waveguides,” Sov. J. Quantum Electron. 15, 1523–1526 (1985).
[CrossRef]

Other (1)

L. C. Blank and J. D. Cox, “Demonstration of optical drop-and-insert for accessing 2.24 Gbit/s optical transmission systems directly at the 140 Mbit/s level,” presented at the 14th European Conference on Optical Communication, Brighton, England, 1988.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Linear light propagation in an asymmetric converging Y junction. (a), Sketch of the structure. If the widths of the two waveguides are sufficiently different, the light coupled into the wider guide will transform into the symmetric mode of the junction point (b), while light launched into the narrower guide will evolve into the antisymmetric mode (c).

Fig. 2
Fig. 2

Switching in an X junction with asymmetric-input and symmetric-output Y junction using a signal beam in the strongly nonlinear regime (Imax = 1, n2 = 5.0 × 10−4) and a control beam in the weakly nonlinear regime (Imax = 1/200, n2 = 5.0 × 10−4), both launched into the front ports of the structure; the beams are coherent. Shown are (a) the schematic of the structure; (b) the strong beam coupled into the wide guide with the weak beam off; (c) the strong beam in the wide guide, the weak beam in the narrow input port; (d) as in (c) but reversed relative phase (electric field distribution input into the narrow guide multiplied by −1).

Fig. 3
Fig. 3

X junction of Fig. 2(a) with only a weak signal beam launched into either of the two input ports. Shown are the (a) schematic of the structure [identical to Fig. 2(a)]; (b) input in the wider guide; (c) input in the narrower guide. The front (lower) portion of the figure exhibits the same situation as in Fig. 1.

Fig. 4
Fig. 4

Situation as in Fig. 3, but with a strong control beam (nonlinear regime) launched into the right-hand guide of the symmetric output junction. (a) Schematic of the structure [identical to Fig. 2(a)]. (c) Undisturbed propagation of the control beam from the back of the device; (b), (d) subsequent propagation of the signal beam input in the wider or narrower guide of the input Y junction, respectively.

Fig. 5
Fig. 5

Situation as in Fig. 4, but with the control beam launched into the left-hand guide of the output Y junction. The signal input into the wider guide of the input Y junction always ends up in the output guide carrying the control beam and vice versa.

Fig. 6
Fig. 6

Contrast ratio η of the power in the two output guides as a function of the n2Imax product of the control beam; the plot is semilogarithmic.

Fig. 7
Fig. 7

Behavior of the X junction of Fig. 2(a) with a quasi-continuous control beam in the weakly nonlinear regime with n2Imax = 1.0 × 10−5 and a short, square signal pulse in the highly nonlinear regime with n2Imax = 5.0 × 10−4. (a) Repeats the schematic of the structure [identical to Fig. 2(a)]. (c) Initial undisturbed propagation of the control beam; (b), (d) illustrate the subsequent propagation of the signal pulse—launched into the wider or narrower input guide, respectively—with mutual influence of the beams. There is no appreciable effect of the control beam on the signal pulse, because the control beam is too weak.

Fig. 8
Fig. 8

Situation and partitioning as in Fig. 7, but both beams in the strongly nonlinear regime with n2Imax = 5.0 × 10−4 each. The switching behavior of the X junction is qualitatively equal to that illustrated in Fig. 5; the high intensity of the signal pulse has no significance.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n lin ( x , z ) = n 0 + Δ n cosh 2 [ x x m ( z ) ] cos α h / 2 ,
E ( x , z ) = cosh Q [ x x m ( z ) ] cos α h / 2 ,
Q = ( 1 / 2 ) [ ( 1 + V 2 ) 1 / 2 1 ] ,
V = 2 π λ h ( 2 n 0 Δ n ) 1 / 2 ;
n ( x , z ) = n lin ( x , z ) + n nl ( x , z ) ,

Metrics