Abstract

The conjugate reflectivity of colloidal gold has been measured for four samples containing particles with mean sizes of 5, 10, 15, and 30 nm. The response times of the samples indicate a size dependence, but the conjugate signal strength was found to be only weakly dependent on particle size. Calculations of the local-field enhancement in the host matrix by the effective-medium theory indicate that the nonlinearity is inherent in the gold particles.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511 (1985).
    [Crossref] [PubMed]
  2. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647 (1986).
    [Crossref]
  3. R. H. Ritchie, “Surface plasmons in solids,” Surf. Sci. 34, 1 (1973).
    [Crossref]
  4. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1962).
  5. R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680 (1987).
    [Crossref] [PubMed]
  6. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347 (1988).
    [Crossref]
  7. N. V. Janssen Biotech, B-2430 Olen, Belgium; U.S. distributor: Ted Pella, Inc., Redding, California 96099.
  8. B. Jirgensons and M. E. Straumanis, A Short Textbook of Colloid Chemistry, 2nd ed. (Macmillan, New York, 1962);see pp. 276–277 for electron micrographs of gold colloids and diagrams of common projections for octahedral-shaped particles.
  9. H. E. Boyer and T. L. Gall, eds., Metals Handbook (American Society for Metals, Metals Park, Ohio, 1985).
  10. W. P. Halperin, “Quantum size effects in metal particles,” Rev. Mod. Phys. 58, 533 (1986).
    [Crossref]
  11. J. A. A. J. Perenboom, P. Wyder, and F. Meier, “Electronic properties of small metallic particles,” Phys. Rep. 78, 173 (1981).
    [Crossref]
  12. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).
  13. B. K. Russell, J. G. Mantovani, V. E. Anderson, R. J. Warmack, and T. L. Ferrell, “Experimental test of the Mie theory for microlithographically produced silver spheres,” Phys. Rev. B 35, 2151 (1987).
    [Crossref]
  14. U. Kreibig, “Lattice defects in small metallic particles and their influence on size effects,” Z. Phys. B 31, 39 (1978).
    [Crossref]
  15. M. J. Bloemer, M. C. Buncick, R. J. Warmack, and T. L. Ferrell, “Surface electromagnetic modes in prolate spheroids of gold, aluminum, and copper,” J. Opt. Soc. Am. B 5, 2552 (1988).
    [Crossref]
  16. H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and A12O3,” J. Opt. Soc. Am. 65, 742 (1975).
    [Crossref]
  17. E. J. Heilweil and R. M. Hochstrasser, “Nonlinear spectroscopy and picosecond transient grating study of colloidal gold,” J. Chem. Phys. 82, 4762 (1985).
    [Crossref]
  18. R. K. Jain and R. C. Lind, “Degenerate four-wave mixing in semiconductor-doped glasses,” J. Opt. Soc. Am. 73, 647 (1983).
    [Crossref]
  19. A. Wokaun, “Surface enhanced electromagnetic processes,” Solid State Phys. 38, 223 (1984).
    [Crossref]
  20. J. W. Haus, N. Kalyaniwalla, R. Inguva, M. Bloemer, and C. M. Bowden, “Nonlinear optical properties of conductive spheroidal particle composites,” J. Opt. Soc. Am. B 6, 797 (1989).
    [Crossref]
  21. P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170 (1979).
    [Crossref]

1989 (1)

1988 (2)

M. J. Bloemer, M. C. Buncick, R. J. Warmack, and T. L. Ferrell, “Surface electromagnetic modes in prolate spheroids of gold, aluminum, and copper,” J. Opt. Soc. Am. B 5, 2552 (1988).
[Crossref]

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347 (1988).
[Crossref]

1987 (2)

B. K. Russell, J. G. Mantovani, V. E. Anderson, R. J. Warmack, and T. L. Ferrell, “Experimental test of the Mie theory for microlithographically produced silver spheres,” Phys. Rev. B 35, 2151 (1987).
[Crossref]

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680 (1987).
[Crossref] [PubMed]

1986 (2)

1985 (2)

D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511 (1985).
[Crossref] [PubMed]

E. J. Heilweil and R. M. Hochstrasser, “Nonlinear spectroscopy and picosecond transient grating study of colloidal gold,” J. Chem. Phys. 82, 4762 (1985).
[Crossref]

1984 (1)

A. Wokaun, “Surface enhanced electromagnetic processes,” Solid State Phys. 38, 223 (1984).
[Crossref]

1983 (1)

1981 (1)

J. A. A. J. Perenboom, P. Wyder, and F. Meier, “Electronic properties of small metallic particles,” Phys. Rep. 78, 173 (1981).
[Crossref]

1979 (1)

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170 (1979).
[Crossref]

1978 (1)

U. Kreibig, “Lattice defects in small metallic particles and their influence on size effects,” Z. Phys. B 31, 39 (1978).
[Crossref]

1975 (1)

1973 (1)

R. H. Ritchie, “Surface plasmons in solids,” Surf. Sci. 34, 1 (1973).
[Crossref]

Alfano, R. R.

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170 (1979).
[Crossref]

Anderson, V. E.

B. K. Russell, J. G. Mantovani, V. E. Anderson, R. J. Warmack, and T. L. Ferrell, “Experimental test of the Mie theory for microlithographically produced silver spheres,” Phys. Rev. B 35, 2151 (1987).
[Crossref]

Bloemer, M.

Bloemer, M. J.

Born, M.

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).

Bowden, C. M.

Buncick, M. C.

Eesley, G. L.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680 (1987).
[Crossref] [PubMed]

Ferrell, T. L.

M. J. Bloemer, M. C. Buncick, R. J. Warmack, and T. L. Ferrell, “Surface electromagnetic modes in prolate spheroids of gold, aluminum, and copper,” J. Opt. Soc. Am. B 5, 2552 (1988).
[Crossref]

B. K. Russell, J. G. Mantovani, V. E. Anderson, R. J. Warmack, and T. L. Ferrell, “Experimental test of the Mie theory for microlithographically produced silver spheres,” Phys. Rev. B 35, 2151 (1987).
[Crossref]

Flytzanis, C.

Fujimoto, J. G.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680 (1987).
[Crossref] [PubMed]

Gudat, W.

Hache, F.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347 (1988).
[Crossref]

F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647 (1986).
[Crossref]

Hagemann, H. J.

Halperin, W. P.

W. P. Halperin, “Quantum size effects in metal particles,” Rev. Mod. Phys. 58, 533 (1986).
[Crossref]

Haus, J. W.

Heilweil, E. J.

E. J. Heilweil and R. M. Hochstrasser, “Nonlinear spectroscopy and picosecond transient grating study of colloidal gold,” J. Chem. Phys. 82, 4762 (1985).
[Crossref]

Ho, P. P.

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170 (1979).
[Crossref]

Hochstrasser, R. M.

E. J. Heilweil and R. M. Hochstrasser, “Nonlinear spectroscopy and picosecond transient grating study of colloidal gold,” J. Chem. Phys. 82, 4762 (1985).
[Crossref]

Inguva, R.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1962).

Jain, R. K.

Janssen Biotech, N. V.

N. V. Janssen Biotech, B-2430 Olen, Belgium; U.S. distributor: Ted Pella, Inc., Redding, California 96099.

Jirgensons, B.

B. Jirgensons and M. E. Straumanis, A Short Textbook of Colloid Chemistry, 2nd ed. (Macmillan, New York, 1962);see pp. 276–277 for electron micrographs of gold colloids and diagrams of common projections for octahedral-shaped particles.

Kalyaniwalla, N.

Kreibig, U.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347 (1988).
[Crossref]

U. Kreibig, “Lattice defects in small metallic particles and their influence on size effects,” Z. Phys. B 31, 39 (1978).
[Crossref]

Kunz, C.

Lin, W. Z.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680 (1987).
[Crossref] [PubMed]

Lind, R. C.

Mantovani, J. G.

B. K. Russell, J. G. Mantovani, V. E. Anderson, R. J. Warmack, and T. L. Ferrell, “Experimental test of the Mie theory for microlithographically produced silver spheres,” Phys. Rev. B 35, 2151 (1987).
[Crossref]

Meier, F.

J. A. A. J. Perenboom, P. Wyder, and F. Meier, “Electronic properties of small metallic particles,” Phys. Rep. 78, 173 (1981).
[Crossref]

Perenboom, J. A. A. J.

J. A. A. J. Perenboom, P. Wyder, and F. Meier, “Electronic properties of small metallic particles,” Phys. Rep. 78, 173 (1981).
[Crossref]

Ricard, D.

Ritchie, R. H.

R. H. Ritchie, “Surface plasmons in solids,” Surf. Sci. 34, 1 (1973).
[Crossref]

Roussignol, P.

Russell, B. K.

B. K. Russell, J. G. Mantovani, V. E. Anderson, R. J. Warmack, and T. L. Ferrell, “Experimental test of the Mie theory for microlithographically produced silver spheres,” Phys. Rev. B 35, 2151 (1987).
[Crossref]

Schoenlein, R. W.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680 (1987).
[Crossref] [PubMed]

Straumanis, M. E.

B. Jirgensons and M. E. Straumanis, A Short Textbook of Colloid Chemistry, 2nd ed. (Macmillan, New York, 1962);see pp. 276–277 for electron micrographs of gold colloids and diagrams of common projections for octahedral-shaped particles.

Warmack, R. J.

M. J. Bloemer, M. C. Buncick, R. J. Warmack, and T. L. Ferrell, “Surface electromagnetic modes in prolate spheroids of gold, aluminum, and copper,” J. Opt. Soc. Am. B 5, 2552 (1988).
[Crossref]

B. K. Russell, J. G. Mantovani, V. E. Anderson, R. J. Warmack, and T. L. Ferrell, “Experimental test of the Mie theory for microlithographically produced silver spheres,” Phys. Rev. B 35, 2151 (1987).
[Crossref]

Wokaun, A.

A. Wokaun, “Surface enhanced electromagnetic processes,” Solid State Phys. 38, 223 (1984).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).

Wyder, P.

J. A. A. J. Perenboom, P. Wyder, and F. Meier, “Electronic properties of small metallic particles,” Phys. Rep. 78, 173 (1981).
[Crossref]

Appl. Phys. A (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A 47, 347 (1988).
[Crossref]

J. Chem. Phys. (1)

E. J. Heilweil and R. M. Hochstrasser, “Nonlinear spectroscopy and picosecond transient grating study of colloidal gold,” J. Chem. Phys. 82, 4762 (1985).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (3)

Opt. Lett. (1)

Phys. Rep. (1)

J. A. A. J. Perenboom, P. Wyder, and F. Meier, “Electronic properties of small metallic particles,” Phys. Rep. 78, 173 (1981).
[Crossref]

Phys. Rev. A (1)

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170 (1979).
[Crossref]

Phys. Rev. B (1)

B. K. Russell, J. G. Mantovani, V. E. Anderson, R. J. Warmack, and T. L. Ferrell, “Experimental test of the Mie theory for microlithographically produced silver spheres,” Phys. Rev. B 35, 2151 (1987).
[Crossref]

Phys. Rev. Lett. (1)

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680 (1987).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

W. P. Halperin, “Quantum size effects in metal particles,” Rev. Mod. Phys. 58, 533 (1986).
[Crossref]

Solid State Phys. (1)

A. Wokaun, “Surface enhanced electromagnetic processes,” Solid State Phys. 38, 223 (1984).
[Crossref]

Surf. Sci. (1)

R. H. Ritchie, “Surface plasmons in solids,” Surf. Sci. 34, 1 (1973).
[Crossref]

Z. Phys. B (1)

U. Kreibig, “Lattice defects in small metallic particles and their influence on size effects,” Z. Phys. B 31, 39 (1978).
[Crossref]

Other (5)

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1962).

N. V. Janssen Biotech, B-2430 Olen, Belgium; U.S. distributor: Ted Pella, Inc., Redding, California 96099.

B. Jirgensons and M. E. Straumanis, A Short Textbook of Colloid Chemistry, 2nd ed. (Macmillan, New York, 1962);see pp. 276–277 for electron micrographs of gold colloids and diagrams of common projections for octahedral-shaped particles.

H. E. Boyer and T. L. Gall, eds., Metals Handbook (American Society for Metals, Metals Park, Ohio, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Linear absorbance of the four colloidal gold samples and of a cell containing only water. The sample with the 30-nm-sized gold particles has the highest absorbance. The absorbance of the colloidal samples decreases slightly with decreasing particle size. The spectra include the absorbance of the spectrophotometer cell holding the liquid.

Fig. 2
Fig. 2

Conjugate reflectivity versus pump intensity of the four colloidal samples and of water.

Fig. 3
Fig. 3

Time response of colloidal gold as a function of particle size. Each curve was normalized to a maximum conjugate signal of 1. The dashed lines indicate the background-noise level for each sample.

Tables (1)

Tables Icon

Table 1 Particle Size Distribution

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

E L = 3 d ( ω ) m ( ω ) + 2 d ( ω ) E 0 = f ( ω ) E 0 ,
P NL ( 3 ) = 3 [ p f ( ω ) 2 | f ( ω ) | 2 χ m ( 3 ) ] E f E p * E b = 3 χ ( 3 ) E f E p * E b ,
α = 18 π p d 3 / 2 λ m ( m + 2 d ) 2 + m 2 .
¯ = d + p ( 3 d 2 d + m ) ( m d ) .
d = d 0 + χ d ( 3 ) | E d | 2 ,
¯ = 0 + χ ( 3 ) | E 0 | 2 .
χ ¯ ( 3 ) = χ d ( 3 ) { 1 + p [ 3 ( m 2 d 0 ) 2 d 0 m 3 d 0 ( m d 0 ) ( 2 d 0 + m ) 2 ] } .
m = Drude + x + L ,
δ m δ L δ T δ T ,
L = C [ 1 F ( T ) ] .
L T 10 3 K 1 .
T = E abs / γ T ,
m = 24 π 2 n c χ m ( 3 ) | f | 2 I 0 ,
Im ( χ m ( 3 ) ) 1 24 π 2 γ T ω p 2 ω 2 τ 0 τ eff L T ,
T t = D TW 2 T ,
ρ m C p m V 0 Δ T 0 = ρ m C p m V 0 Δ T < ( t ) + ρ w C p w υ υ r d 3 x Δ T > ( r , t ) ,
Δ T < ( t ) = Δ T 0 ( q + q ) [ q + exp D T W R 0 2 q + 2 erfc q + 2 D T W R 0 2 q exp D T W R 0 2 q 2 erfc q 2 D T W R 0 2 ] ,
q ± = Q 2 ± 1 2 Q 2 4 Q
Q = 3 ρ m C p m ρ w C p w .
τ f = R 0 2 q + 2 D TW 0.5 R 0 2 ( nm ) psec .

Metrics