Abstract

A high-pressure oxygen cell has been used to generate vibrational stimulated Raman scattering, using a Q-switched laser. Peak first-Stokes conversion efficiencies of 6% are reported, and direct use of the cell output for stimulated Raman pumping of oxygen in room air to the first vibrationally excited level is demonstrated. Coherent anti-Stokes Raman spectroscopy is used to study the density dependence of the 298-K Q-branch line shape in the 5–31-amagat range, with the results compared with spectral models that incorporate the effects of intermolecular rotational energy transfer.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook, F. J. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2.
  2. H. W. Schrotter and H. W. Klochner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, Berlin, 1979).
    [Crossref]
  3. T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV:SRS of excimer laser wavelength,” IEEE J. Quantum Electron. QE-15, 337–342 (1979).
    [Crossref]
  4. P. Rabinowitz, B. N. Perry, and N. Levinois, “A continuously tunable sequential Stokes Raman laser,” IEEE J. Quantum Electron. QE-22, 797–801 (1986).
    [Crossref]
  5. C. Guntermann, V. Schulz-von-der-Gathen, and H. F. Wobele, “Raman shifting of Nd:YAG laser radiation in methane: an efficient method to generate 3-μ m radiation for medical users,” Appl. Opt. 28, 135–138 (1989).
    [Crossref] [PubMed]
  6. See, for example, Y. Talcubo, M. Tsuchiya, and M. Shimazu, “Stimulated electronic Raman scattering in In vapor,” Appl. Phys., 139–142 (1981).
  7. P. R. Regnier and J. P.-E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–243 (1973).
    [Crossref]
  8. G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and wavelength dependence of the rotational Raman gain coefficient in N2,” Opt. Lett. 11, 348–350 (1986).
    [Crossref] [PubMed]
  9. M. A. Henesian, C. G. Swift, and J. R. Murray, “Stimulated rotational Raman scattering in nitrogen in long air paths,” Opt. Lett. 10, 565–567 (1985).
    [Crossref] [PubMed]
  10. V. S. Averbakh, A. L. Makarov, and V. I. Jalanov, “Stimulated Raman scattering on rotational and vibrational transitions in nitrogen gas,” Sov. J. Quantum Electron. 8, 472–476 (1978).
    [Crossref]
  11. N. V. Kratsov and N. I. Naumkin, “Characteristics of intracavity Raman scattering in compressed oxygen,” Sov. J. Quantum Electron. 16, 856–857 (1986).
    [Crossref]
  12. R. Miles, C. Cohen, J. Connors, P. Howard, S. Huang, E. Markovitz, and G. Russell, “Velocity measurements by vibrational tagging and fluorescent probing of oxygen,” Opt. Lett. 12, 861–863 (1987).
    [Crossref] [PubMed]
  13. R. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393 (1989).
    [Crossref]
  14. R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation + laser-induced electronic fluorescence (RELIEF) velocity tagging of oxygen,” Exp. Fluids 8, 17–24 (1989).
    [Crossref]
  15. E. E. Hagenlocker and W. G. Rado, “Stimulated Brillouin and Raman scattering in gases,” Appl. Phys. Lett. 7, 236–238 (1965).
    [Crossref]
  16. R. J. Hall and D. A. Greenhalgh, “Application of the rotational diffusion model to gaseous N2CARS spectra,” Opt. Commun. 40, 417–419 (1982).
    [Crossref]
  17. G. J. Rosasco, W. Lempert, W. S. Hurst, and A. Fein, “Line interference effects in the vibrational Q-branch spectra of N2and CO,” Chem. Phy. Lett. 97, 435–439 (1983).
    [Crossref]
  18. G. C. Herring, H. Moosmüller, S. A. Lee, and C. Y. She, “Flow velocity measurements with stimulated Rayleigh–Brillouin-gain spectroscopy,” Opt. Lett. 8, 602–604 (1983).
    [Crossref] [PubMed]
  19. S. Yip and M. Nelkin, “Application of a kinetic model to time-dependent density correlations in fluids,” Phys. Rev. A 135, 1241–1247 (1964).
  20. J. R. Murray, J. Goldbar, and A. Szöke, “Backward Raman gain measurements for KrF laser radiation scattered by CH4,” Appl. Phys. Lett. 32, 551–553 (1978).
    [Crossref]
  21. W. R. Truttna, Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
    [Crossref]
  22. M. E. Mack, R. L. Carman, J. Reintjes, and N. Bloembergen, “Transient stimulated rotational and vibrational Raman scattering in gases,” Appl. Phys. Lett. 16, 209–211 (1970).
    [Crossref]
  23. R. B. Miles, J. J. Connors, E. C. Markovitz, and G. J. Roth, “Coherent Anti-Stokes Raman scattering (CARS) and Raman pumping lineshapes in high fields,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel and L. A. Rahn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.912, 184–190 (1988).
    [Crossref]
  24. M. E. Long, D. C. Fourgette, M. C. Escoda, and C. B. Layne, “Instantaneous Ramanography of a turbulent diffusion flame,” Opt. Lett. 8, 244–246 (1983).
    [Crossref] [PubMed]
  25. D. C. Macpherson, R. C. Swanson, and J. L. Carlsten, “Quantum fluctuations in the stimulated-Raman-scattering linewidth,” Phys. Rev. Lett. 61, 66–69 (1988).
    [Crossref] [PubMed]
  26. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980–1993 (1981).
    [Crossref]
  27. R. J. Hall, J. F. Verdieck, and A. C. Eckbreth, “Pressure-induced narrowing of the CARS spectrum of N2,” Opt. Commun. 35, 69–75 (1980).
    [Crossref]
  28. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–73 (1953).
    [Crossref]
  29. A. E. DePristo, S. D. Augustin, R. Ramaswamy, and H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem Phys. 71, 850–865 (1979).
    [Crossref]
  30. L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
    [Crossref]
  31. D. A. Greenhalgh, F. M. Porter, and S. A. Barton, “A polynomial energy-gap model for molecular linewidths,” J. Quant. Spectrosc. Radiat. Transfer 34, 95–99 (1985).
    [Crossref]
  32. M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2at 1–10 atm,” J. Phys. Chem. 1987, 41–46 (1987).
    [Crossref]
  33. J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, and J. W. Hahn, “Comparison of rotational rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. (to be published).
  34. L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, and H. Berger, “Rotationally inelastic rates for N2–N2system from a scaling theoretical analysis of the stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
    [Crossref]
  35. G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, and S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 K to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
    [Crossref]
  36. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).
  37. J. P. Boquillon, “High resolution coherent anti-Stokes Raman spectroscopy (CARS) of O2and CO2,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel and L. A. Rahn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.912, 160–170 (1988).
    [Crossref]
  38. G. J. Rosasco and W. S. Hurst, “Dispersion of the electronic contribution to the third-order nonlinear susceptibility of H2,” J. Opt. Soc. Am. B 3, 1251–1256 (1986).
    [Crossref]
  39. V. Mizrahi and D. P. Shelton, “Dispersion of nonlinear susceptibilities of Ar, N2, and O2measured and compared,” Phys. Rev. Lett. 55, 696–699 (1985).
    [Crossref] [PubMed]
  40. R. L. Farrow and L. A. Rahn, “Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers,” J. Opt. Soc. Am. B 2, 903–907 (1985).
    [Crossref]
  41. C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids (Clarendon, Oxford, 1984), Vol. 1.

1989 (4)

R. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393 (1989).
[Crossref]

R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation + laser-induced electronic fluorescence (RELIEF) velocity tagging of oxygen,” Exp. Fluids 8, 17–24 (1989).
[Crossref]

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, and S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 K to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[Crossref]

C. Guntermann, V. Schulz-von-der-Gathen, and H. F. Wobele, “Raman shifting of Nd:YAG laser radiation in methane: an efficient method to generate 3-μ m radiation for medical users,” Appl. Opt. 28, 135–138 (1989).
[Crossref] [PubMed]

1988 (2)

D. C. Macpherson, R. C. Swanson, and J. L. Carlsten, “Quantum fluctuations in the stimulated-Raman-scattering linewidth,” Phys. Rev. Lett. 61, 66–69 (1988).
[Crossref] [PubMed]

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, and H. Berger, “Rotationally inelastic rates for N2–N2system from a scaling theoretical analysis of the stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[Crossref]

1987 (3)

M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2at 1–10 atm,” J. Phys. Chem. 1987, 41–46 (1987).
[Crossref]

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[Crossref]

R. Miles, C. Cohen, J. Connors, P. Howard, S. Huang, E. Markovitz, and G. Russell, “Velocity measurements by vibrational tagging and fluorescent probing of oxygen,” Opt. Lett. 12, 861–863 (1987).
[Crossref] [PubMed]

1986 (4)

G. J. Rosasco and W. S. Hurst, “Dispersion of the electronic contribution to the third-order nonlinear susceptibility of H2,” J. Opt. Soc. Am. B 3, 1251–1256 (1986).
[Crossref]

G. C. Herring, M. J. Dyer, and W. K. Bischel, “Temperature and wavelength dependence of the rotational Raman gain coefficient in N2,” Opt. Lett. 11, 348–350 (1986).
[Crossref] [PubMed]

N. V. Kratsov and N. I. Naumkin, “Characteristics of intracavity Raman scattering in compressed oxygen,” Sov. J. Quantum Electron. 16, 856–857 (1986).
[Crossref]

P. Rabinowitz, B. N. Perry, and N. Levinois, “A continuously tunable sequential Stokes Raman laser,” IEEE J. Quantum Electron. QE-22, 797–801 (1986).
[Crossref]

1985 (4)

D. A. Greenhalgh, F. M. Porter, and S. A. Barton, “A polynomial energy-gap model for molecular linewidths,” J. Quant. Spectrosc. Radiat. Transfer 34, 95–99 (1985).
[Crossref]

V. Mizrahi and D. P. Shelton, “Dispersion of nonlinear susceptibilities of Ar, N2, and O2measured and compared,” Phys. Rev. Lett. 55, 696–699 (1985).
[Crossref] [PubMed]

R. L. Farrow and L. A. Rahn, “Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers,” J. Opt. Soc. Am. B 2, 903–907 (1985).
[Crossref]

M. A. Henesian, C. G. Swift, and J. R. Murray, “Stimulated rotational Raman scattering in nitrogen in long air paths,” Opt. Lett. 10, 565–567 (1985).
[Crossref] [PubMed]

1983 (3)

1982 (1)

R. J. Hall and D. A. Greenhalgh, “Application of the rotational diffusion model to gaseous N2CARS spectra,” Opt. Commun. 40, 417–419 (1982).
[Crossref]

1981 (2)

See, for example, Y. Talcubo, M. Tsuchiya, and M. Shimazu, “Stimulated electronic Raman scattering in In vapor,” Appl. Phys., 139–142 (1981).

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980–1993 (1981).
[Crossref]

1980 (1)

R. J. Hall, J. F. Verdieck, and A. C. Eckbreth, “Pressure-induced narrowing of the CARS spectrum of N2,” Opt. Commun. 35, 69–75 (1980).
[Crossref]

1979 (3)

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV:SRS of excimer laser wavelength,” IEEE J. Quantum Electron. QE-15, 337–342 (1979).
[Crossref]

A. E. DePristo, S. D. Augustin, R. Ramaswamy, and H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem Phys. 71, 850–865 (1979).
[Crossref]

W. R. Truttna, Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[Crossref]

1978 (2)

J. R. Murray, J. Goldbar, and A. Szöke, “Backward Raman gain measurements for KrF laser radiation scattered by CH4,” Appl. Phys. Lett. 32, 551–553 (1978).
[Crossref]

V. S. Averbakh, A. L. Makarov, and V. I. Jalanov, “Stimulated Raman scattering on rotational and vibrational transitions in nitrogen gas,” Sov. J. Quantum Electron. 8, 472–476 (1978).
[Crossref]

1973 (1)

P. R. Regnier and J. P.-E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–243 (1973).
[Crossref]

1970 (1)

M. E. Mack, R. L. Carman, J. Reintjes, and N. Bloembergen, “Transient stimulated rotational and vibrational Raman scattering in gases,” Appl. Phys. Lett. 16, 209–211 (1970).
[Crossref]

1965 (1)

E. E. Hagenlocker and W. G. Rado, “Stimulated Brillouin and Raman scattering in gases,” Appl. Phys. Lett. 7, 236–238 (1965).
[Crossref]

1964 (1)

S. Yip and M. Nelkin, “Application of a kinetic model to time-dependent density correlations in fluids,” Phys. Rev. A 135, 1241–1247 (1964).

1953 (1)

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–73 (1953).
[Crossref]

Augustin, S. D.

A. E. DePristo, S. D. Augustin, R. Ramaswamy, and H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem Phys. 71, 850–865 (1979).
[Crossref]

Averbakh, V. S.

V. S. Averbakh, A. L. Makarov, and V. I. Jalanov, “Stimulated Raman scattering on rotational and vibrational transitions in nitrogen gas,” Sov. J. Quantum Electron. 8, 472–476 (1978).
[Crossref]

Barker, D. L.

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV:SRS of excimer laser wavelength,” IEEE J. Quantum Electron. QE-15, 337–342 (1979).
[Crossref]

Barton, S. A.

D. A. Greenhalgh, F. M. Porter, and S. A. Barton, “A polynomial energy-gap model for molecular linewidths,” J. Quant. Spectrosc. Radiat. Transfer 34, 95–99 (1985).
[Crossref]

Berger, H.

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, and H. Berger, “Rotationally inelastic rates for N2–N2system from a scaling theoretical analysis of the stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[Crossref]

Bird, R. B.

J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

Bischel, W. K.

Bloembergen, N.

M. E. Mack, R. L. Carman, J. Reintjes, and N. Bloembergen, “Transient stimulated rotational and vibrational Raman scattering in gases,” Appl. Phys. Lett. 16, 209–211 (1970).
[Crossref]

Bonamy, J.

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, and H. Berger, “Rotationally inelastic rates for N2–N2system from a scaling theoretical analysis of the stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[Crossref]

Bonamy, L.

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, and H. Berger, “Rotationally inelastic rates for N2–N2system from a scaling theoretical analysis of the stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[Crossref]

Boquillon, J. P.

J. P. Boquillon, “High resolution coherent anti-Stokes Raman spectroscopy (CARS) of O2and CO2,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel and L. A. Rahn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.912, 160–170 (1988).
[Crossref]

Byer, R. L.

W. R. Truttna, Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[Crossref]

Carlsten, J. L.

D. C. Macpherson, R. C. Swanson, and J. L. Carlsten, “Quantum fluctuations in the stimulated-Raman-scattering linewidth,” Phys. Rev. Lett. 61, 66–69 (1988).
[Crossref] [PubMed]

Carman, R. L.

M. E. Mack, R. L. Carman, J. Reintjes, and N. Bloembergen, “Transient stimulated rotational and vibrational Raman scattering in gases,” Appl. Phys. Lett. 16, 209–211 (1970).
[Crossref]

Chaux, R.

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, and H. Berger, “Rotationally inelastic rates for N2–N2system from a scaling theoretical analysis of the stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[Crossref]

Cohen, C.

Coltrin, M. E.

M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2at 1–10 atm,” J. Phys. Chem. 1987, 41–46 (1987).
[Crossref]

Connors, J.

R. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393 (1989).
[Crossref]

R. Miles, C. Cohen, J. Connors, P. Howard, S. Huang, E. Markovitz, and G. Russell, “Velocity measurements by vibrational tagging and fluorescent probing of oxygen,” Opt. Lett. 12, 861–863 (1987).
[Crossref] [PubMed]

Connors, J. J.

R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation + laser-induced electronic fluorescence (RELIEF) velocity tagging of oxygen,” Exp. Fluids 8, 17–24 (1989).
[Crossref]

R. B. Miles, J. J. Connors, E. C. Markovitz, and G. J. Roth, “Coherent Anti-Stokes Raman scattering (CARS) and Raman pumping lineshapes in high fields,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel and L. A. Rahn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.912, 184–190 (1988).
[Crossref]

Curtiss, C. F.

J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

DePristo, A. E.

A. E. DePristo, S. D. Augustin, R. Ramaswamy, and H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem Phys. 71, 850–865 (1979).
[Crossref]

Dicke, R. H.

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–73 (1953).
[Crossref]

Dohne, S. M.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, and S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 K to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[Crossref]

Dyer, M. J.

Eckbreth, A. C.

R. J. Hall, J. F. Verdieck, and A. C. Eckbreth, “Pressure-induced narrowing of the CARS spectrum of N2,” Opt. Commun. 35, 69–75 (1980).
[Crossref]

Escoda, M. C.

Farrow, R. L.

Fein, A.

G. J. Rosasco, W. Lempert, W. S. Hurst, and A. Fein, “Line interference effects in the vibrational Q-branch spectra of N2and CO,” Chem. Phy. Lett. 97, 435–439 (1983).
[Crossref]

Fourgette, D. C.

Goldbar, J.

J. R. Murray, J. Goldbar, and A. Szöke, “Backward Raman gain measurements for KrF laser radiation scattered by CH4,” Appl. Phys. Lett. 32, 551–553 (1978).
[Crossref]

Gray, C. G.

C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids (Clarendon, Oxford, 1984), Vol. 1.

Greenhalgh, D. A.

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[Crossref]

D. A. Greenhalgh, F. M. Porter, and S. A. Barton, “A polynomial energy-gap model for molecular linewidths,” J. Quant. Spectrosc. Radiat. Transfer 34, 95–99 (1985).
[Crossref]

R. J. Hall and D. A. Greenhalgh, “Application of the rotational diffusion model to gaseous N2CARS spectra,” Opt. Commun. 40, 417–419 (1982).
[Crossref]

Gubbins, K. E.

C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids (Clarendon, Oxford, 1984), Vol. 1.

Guntermann, C.

Hagenlocker, E. E.

E. E. Hagenlocker and W. G. Rado, “Stimulated Brillouin and Raman scattering in gases,” Appl. Phys. Lett. 7, 236–238 (1965).
[Crossref]

Hahn, J. W.

J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, and J. W. Hahn, “Comparison of rotational rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. (to be published).

Hall, R. J.

R. J. Hall and D. A. Greenhalgh, “Application of the rotational diffusion model to gaseous N2CARS spectra,” Opt. Commun. 40, 417–419 (1982).
[Crossref]

R. J. Hall, J. F. Verdieck, and A. C. Eckbreth, “Pressure-induced narrowing of the CARS spectrum of N2,” Opt. Commun. 35, 69–75 (1980).
[Crossref]

Henesian, M. A.

Herring, G. C.

Hirschfelder, J. O.

J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

Howard, P.

R. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393 (1989).
[Crossref]

R. Miles, C. Cohen, J. Connors, P. Howard, S. Huang, E. Markovitz, and G. Russell, “Velocity measurements by vibrational tagging and fluorescent probing of oxygen,” Opt. Lett. 12, 861–863 (1987).
[Crossref] [PubMed]

Howard, P. J.

R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation + laser-induced electronic fluorescence (RELIEF) velocity tagging of oxygen,” Exp. Fluids 8, 17–24 (1989).
[Crossref]

Huang, S.

Hurst, W. S.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, and S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 K to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[Crossref]

G. J. Rosasco and W. S. Hurst, “Dispersion of the electronic contribution to the third-order nonlinear susceptibility of H2,” J. Opt. Soc. Am. B 3, 1251–1256 (1986).
[Crossref]

G. J. Rosasco, W. Lempert, W. S. Hurst, and A. Fein, “Line interference effects in the vibrational Q-branch spectra of N2and CO,” Chem. Phy. Lett. 97, 435–439 (1983).
[Crossref]

J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, and J. W. Hahn, “Comparison of rotational rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. (to be published).

Jalanov, V. I.

V. S. Averbakh, A. L. Makarov, and V. I. Jalanov, “Stimulated Raman scattering on rotational and vibrational transitions in nitrogen gas,” Sov. J. Quantum Electron. 8, 472–476 (1978).
[Crossref]

Kaiser, W.

W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook, F. J. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2.

Klochner, H. W.

H. W. Schrotter and H. W. Klochner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, Berlin, 1979).
[Crossref]

Koszykowski, M. L.

M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2at 1–10 atm,” J. Phys. Chem. 1987, 41–46 (1987).
[Crossref]

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[Crossref]

Kratsov, N. V.

N. V. Kratsov and N. I. Naumkin, “Characteristics of intracavity Raman scattering in compressed oxygen,” Sov. J. Quantum Electron. 16, 856–857 (1986).
[Crossref]

Lavorel, B.

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, and H. Berger, “Rotationally inelastic rates for N2–N2system from a scaling theoretical analysis of the stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[Crossref]

Layne, C. B.

Lee, S. A.

Lempert, W.

G. J. Rosasco, W. Lempert, W. S. Hurst, and A. Fein, “Line interference effects in the vibrational Q-branch spectra of N2and CO,” Chem. Phy. Lett. 97, 435–439 (1983).
[Crossref]

Levinois, N.

P. Rabinowitz, B. N. Perry, and N. Levinois, “A continuously tunable sequential Stokes Raman laser,” IEEE J. Quantum Electron. QE-22, 797–801 (1986).
[Crossref]

Long, M. E.

Looney, J. P.

J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, and J. W. Hahn, “Comparison of rotational rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. (to be published).

Loree, T. R.

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV:SRS of excimer laser wavelength,” IEEE J. Quantum Electron. QE-15, 337–342 (1979).
[Crossref]

Mack, M. E.

M. E. Mack, R. L. Carman, J. Reintjes, and N. Bloembergen, “Transient stimulated rotational and vibrational Raman scattering in gases,” Appl. Phys. Lett. 16, 209–211 (1970).
[Crossref]

Macpherson, D. C.

D. C. Macpherson, R. C. Swanson, and J. L. Carlsten, “Quantum fluctuations in the stimulated-Raman-scattering linewidth,” Phys. Rev. Lett. 61, 66–69 (1988).
[Crossref] [PubMed]

Maier, M.

W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook, F. J. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2.

Makarov, A. L.

V. S. Averbakh, A. L. Makarov, and V. I. Jalanov, “Stimulated Raman scattering on rotational and vibrational transitions in nitrogen gas,” Sov. J. Quantum Electron. 8, 472–476 (1978).
[Crossref]

Markovitz, E.

R. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393 (1989).
[Crossref]

R. Miles, C. Cohen, J. Connors, P. Howard, S. Huang, E. Markovitz, and G. Russell, “Velocity measurements by vibrational tagging and fluorescent probing of oxygen,” Opt. Lett. 12, 861–863 (1987).
[Crossref] [PubMed]

Markovitz, E. C.

R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation + laser-induced electronic fluorescence (RELIEF) velocity tagging of oxygen,” Exp. Fluids 8, 17–24 (1989).
[Crossref]

R. B. Miles, J. J. Connors, E. C. Markovitz, and G. J. Roth, “Coherent Anti-Stokes Raman scattering (CARS) and Raman pumping lineshapes in high fields,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel and L. A. Rahn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.912, 184–190 (1988).
[Crossref]

Miles, R.

R. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393 (1989).
[Crossref]

R. Miles, C. Cohen, J. Connors, P. Howard, S. Huang, E. Markovitz, and G. Russell, “Velocity measurements by vibrational tagging and fluorescent probing of oxygen,” Opt. Lett. 12, 861–863 (1987).
[Crossref] [PubMed]

Miles, R. B.

R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation + laser-induced electronic fluorescence (RELIEF) velocity tagging of oxygen,” Exp. Fluids 8, 17–24 (1989).
[Crossref]

R. B. Miles, J. J. Connors, E. C. Markovitz, and G. J. Roth, “Coherent Anti-Stokes Raman scattering (CARS) and Raman pumping lineshapes in high fields,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel and L. A. Rahn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.912, 184–190 (1988).
[Crossref]

Mizrahi, V.

V. Mizrahi and D. P. Shelton, “Dispersion of nonlinear susceptibilities of Ar, N2, and O2measured and compared,” Phys. Rev. Lett. 55, 696–699 (1985).
[Crossref] [PubMed]

Moosmüller, H.

Mostowski, J.

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980–1993 (1981).
[Crossref]

Murray, J. R.

M. A. Henesian, C. G. Swift, and J. R. Murray, “Stimulated rotational Raman scattering in nitrogen in long air paths,” Opt. Lett. 10, 565–567 (1985).
[Crossref] [PubMed]

J. R. Murray, J. Goldbar, and A. Szöke, “Backward Raman gain measurements for KrF laser radiation scattered by CH4,” Appl. Phys. Lett. 32, 551–553 (1978).
[Crossref]

Naumkin, N. I.

N. V. Kratsov and N. I. Naumkin, “Characteristics of intracavity Raman scattering in compressed oxygen,” Sov. J. Quantum Electron. 16, 856–857 (1986).
[Crossref]

Nelkin, M.

S. Yip and M. Nelkin, “Application of a kinetic model to time-dependent density correlations in fluids,” Phys. Rev. A 135, 1241–1247 (1964).

Palmer, R. E.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, and S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 K to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[Crossref]

M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2at 1–10 atm,” J. Phys. Chem. 1987, 41–46 (1987).
[Crossref]

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[Crossref]

Park, Y. K.

W. R. Truttna, Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[Crossref]

Perry, B. N.

P. Rabinowitz, B. N. Perry, and N. Levinois, “A continuously tunable sequential Stokes Raman laser,” IEEE J. Quantum Electron. QE-22, 797–801 (1986).
[Crossref]

Porter, F. M.

D. A. Greenhalgh, F. M. Porter, and S. A. Barton, “A polynomial energy-gap model for molecular linewidths,” J. Quant. Spectrosc. Radiat. Transfer 34, 95–99 (1985).
[Crossref]

Rabinowitz, P.

P. Rabinowitz, B. N. Perry, and N. Levinois, “A continuously tunable sequential Stokes Raman laser,” IEEE J. Quantum Electron. QE-22, 797–801 (1986).
[Crossref]

Rabitz, H.

A. E. DePristo, S. D. Augustin, R. Ramaswamy, and H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem Phys. 71, 850–865 (1979).
[Crossref]

Rado, W. G.

E. E. Hagenlocker and W. G. Rado, “Stimulated Brillouin and Raman scattering in gases,” Appl. Phys. Lett. 7, 236–238 (1965).
[Crossref]

Rahn, L. A.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, and S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 K to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[Crossref]

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[Crossref]

M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2at 1–10 atm,” J. Phys. Chem. 1987, 41–46 (1987).
[Crossref]

R. L. Farrow and L. A. Rahn, “Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers,” J. Opt. Soc. Am. B 2, 903–907 (1985).
[Crossref]

J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, and J. W. Hahn, “Comparison of rotational rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. (to be published).

Ramaswamy, R.

A. E. DePristo, S. D. Augustin, R. Ramaswamy, and H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem Phys. 71, 850–865 (1979).
[Crossref]

Raymer, M. G.

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980–1993 (1981).
[Crossref]

Regnier, P. R.

P. R. Regnier and J. P.-E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–243 (1973).
[Crossref]

Reintjes, J.

M. E. Mack, R. L. Carman, J. Reintjes, and N. Bloembergen, “Transient stimulated rotational and vibrational Raman scattering in gases,” Appl. Phys. Lett. 16, 209–211 (1970).
[Crossref]

Robert, D.

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, and H. Berger, “Rotationally inelastic rates for N2–N2system from a scaling theoretical analysis of the stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[Crossref]

Rosasco, G. J.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, and S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 K to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[Crossref]

G. J. Rosasco and W. S. Hurst, “Dispersion of the electronic contribution to the third-order nonlinear susceptibility of H2,” J. Opt. Soc. Am. B 3, 1251–1256 (1986).
[Crossref]

G. J. Rosasco, W. Lempert, W. S. Hurst, and A. Fein, “Line interference effects in the vibrational Q-branch spectra of N2and CO,” Chem. Phy. Lett. 97, 435–439 (1983).
[Crossref]

J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, and J. W. Hahn, “Comparison of rotational rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. (to be published).

Roth, G.

R. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393 (1989).
[Crossref]

Roth, G. J.

R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation + laser-induced electronic fluorescence (RELIEF) velocity tagging of oxygen,” Exp. Fluids 8, 17–24 (1989).
[Crossref]

R. B. Miles, J. J. Connors, E. C. Markovitz, and G. J. Roth, “Coherent Anti-Stokes Raman scattering (CARS) and Raman pumping lineshapes in high fields,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel and L. A. Rahn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.912, 184–190 (1988).
[Crossref]

Russell, G.

Saint-Loup, R.

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, and H. Berger, “Rotationally inelastic rates for N2–N2system from a scaling theoretical analysis of the stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[Crossref]

Santos, J.

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, and H. Berger, “Rotationally inelastic rates for N2–N2system from a scaling theoretical analysis of the stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[Crossref]

Schrotter, H. W.

H. W. Schrotter and H. W. Klochner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, Berlin, 1979).
[Crossref]

Schulz-von-der-Gathen, V.

Scott, P. B.

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV:SRS of excimer laser wavelength,” IEEE J. Quantum Electron. QE-15, 337–342 (1979).
[Crossref]

She, C. Y.

Shelton, D. P.

V. Mizrahi and D. P. Shelton, “Dispersion of nonlinear susceptibilities of Ar, N2, and O2measured and compared,” Phys. Rev. Lett. 55, 696–699 (1985).
[Crossref] [PubMed]

Shimazu, M.

See, for example, Y. Talcubo, M. Tsuchiya, and M. Shimazu, “Stimulated electronic Raman scattering in In vapor,” Appl. Phys., 139–142 (1981).

Swanson, R. C.

D. C. Macpherson, R. C. Swanson, and J. L. Carlsten, “Quantum fluctuations in the stimulated-Raman-scattering linewidth,” Phys. Rev. Lett. 61, 66–69 (1988).
[Crossref] [PubMed]

Swift, C. G.

Sze, R. C.

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV:SRS of excimer laser wavelength,” IEEE J. Quantum Electron. QE-15, 337–342 (1979).
[Crossref]

Szöke, A.

J. R. Murray, J. Goldbar, and A. Szöke, “Backward Raman gain measurements for KrF laser radiation scattered by CH4,” Appl. Phys. Lett. 32, 551–553 (1978).
[Crossref]

Talcubo, Y.

See, for example, Y. Talcubo, M. Tsuchiya, and M. Shimazu, “Stimulated electronic Raman scattering in In vapor,” Appl. Phys., 139–142 (1981).

Taran, J. P.-E.

P. R. Regnier and J. P.-E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–243 (1973).
[Crossref]

Truttna, W. R.

W. R. Truttna, Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[Crossref]

Tsuchiya, M.

See, for example, Y. Talcubo, M. Tsuchiya, and M. Shimazu, “Stimulated electronic Raman scattering in In vapor,” Appl. Phys., 139–142 (1981).

Verdieck, J. F.

R. J. Hall, J. F. Verdieck, and A. C. Eckbreth, “Pressure-induced narrowing of the CARS spectrum of N2,” Opt. Commun. 35, 69–75 (1980).
[Crossref]

Wobele, H. F.

Yip, S.

S. Yip and M. Nelkin, “Application of a kinetic model to time-dependent density correlations in fluids,” Phys. Rev. A 135, 1241–1247 (1964).

Appl. Opt. (1)

Appl. Phys. (1)

See, for example, Y. Talcubo, M. Tsuchiya, and M. Shimazu, “Stimulated electronic Raman scattering in In vapor,” Appl. Phys., 139–142 (1981).

Appl. Phys. Lett. (4)

P. R. Regnier and J. P.-E. Taran, “On the possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240–243 (1973).
[Crossref]

E. E. Hagenlocker and W. G. Rado, “Stimulated Brillouin and Raman scattering in gases,” Appl. Phys. Lett. 7, 236–238 (1965).
[Crossref]

J. R. Murray, J. Goldbar, and A. Szöke, “Backward Raman gain measurements for KrF laser radiation scattered by CH4,” Appl. Phys. Lett. 32, 551–553 (1978).
[Crossref]

M. E. Mack, R. L. Carman, J. Reintjes, and N. Bloembergen, “Transient stimulated rotational and vibrational Raman scattering in gases,” Appl. Phys. Lett. 16, 209–211 (1970).
[Crossref]

Chem. Phy. Lett. (1)

G. J. Rosasco, W. Lempert, W. S. Hurst, and A. Fein, “Line interference effects in the vibrational Q-branch spectra of N2and CO,” Chem. Phy. Lett. 97, 435–439 (1983).
[Crossref]

Chem. Phys. Lett. (1)

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
[Crossref]

Exp. Fluids (1)

R. B. Miles, J. J. Connors, E. C. Markovitz, P. J. Howard, and G. J. Roth, “Instantaneous profiles and turbulence statistics of supersonic free shear layers by Raman excitation + laser-induced electronic fluorescence (RELIEF) velocity tagging of oxygen,” Exp. Fluids 8, 17–24 (1989).
[Crossref]

IEEE J. Quantum Electron. (3)

W. R. Truttna, Y. K. Park, and R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[Crossref]

T. R. Loree, R. C. Sze, D. L. Barker, and P. B. Scott, “New lines in the UV:SRS of excimer laser wavelength,” IEEE J. Quantum Electron. QE-15, 337–342 (1979).
[Crossref]

P. Rabinowitz, B. N. Perry, and N. Levinois, “A continuously tunable sequential Stokes Raman laser,” IEEE J. Quantum Electron. QE-22, 797–801 (1986).
[Crossref]

J. Chem Phys. (1)

A. E. DePristo, S. D. Augustin, R. Ramaswamy, and H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem Phys. 71, 850–865 (1979).
[Crossref]

J. Chem. Phys. (2)

L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, and H. Berger, “Rotationally inelastic rates for N2–N2system from a scaling theoretical analysis of the stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988).
[Crossref]

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, and S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 K to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

M. L. Koszykowski, L. A. Rahn, R. E. Palmer, and M. E. Coltrin, “Theoretical and experimental studies of high-resolution inverse Raman spectra of N2at 1–10 atm,” J. Phys. Chem. 1987, 41–46 (1987).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

D. A. Greenhalgh, F. M. Porter, and S. A. Barton, “A polynomial energy-gap model for molecular linewidths,” J. Quant. Spectrosc. Radiat. Transfer 34, 95–99 (1985).
[Crossref]

Opt. Commun. (2)

R. J. Hall, J. F. Verdieck, and A. C. Eckbreth, “Pressure-induced narrowing of the CARS spectrum of N2,” Opt. Commun. 35, 69–75 (1980).
[Crossref]

R. J. Hall and D. A. Greenhalgh, “Application of the rotational diffusion model to gaseous N2CARS spectra,” Opt. Commun. 40, 417–419 (1982).
[Crossref]

Opt. Lett. (5)

Phys. Fluids A (1)

R. Miles, J. Connors, E. Markovitz, P. Howard, and G. Roth, “Instantaneous supersonic velocity profiles in an underexpanded jet by oxygen flow tagging,” Phys. Fluids A 1, 389–393 (1989).
[Crossref]

Phys. Rev. (1)

R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–73 (1953).
[Crossref]

Phys. Rev. A (2)

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980–1993 (1981).
[Crossref]

S. Yip and M. Nelkin, “Application of a kinetic model to time-dependent density correlations in fluids,” Phys. Rev. A 135, 1241–1247 (1964).

Phys. Rev. Lett. (2)

D. C. Macpherson, R. C. Swanson, and J. L. Carlsten, “Quantum fluctuations in the stimulated-Raman-scattering linewidth,” Phys. Rev. Lett. 61, 66–69 (1988).
[Crossref] [PubMed]

V. Mizrahi and D. P. Shelton, “Dispersion of nonlinear susceptibilities of Ar, N2, and O2measured and compared,” Phys. Rev. Lett. 55, 696–699 (1985).
[Crossref] [PubMed]

Sov. J. Quantum Electron. (2)

V. S. Averbakh, A. L. Makarov, and V. I. Jalanov, “Stimulated Raman scattering on rotational and vibrational transitions in nitrogen gas,” Sov. J. Quantum Electron. 8, 472–476 (1978).
[Crossref]

N. V. Kratsov and N. I. Naumkin, “Characteristics of intracavity Raman scattering in compressed oxygen,” Sov. J. Quantum Electron. 16, 856–857 (1986).
[Crossref]

Other (7)

W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin, and Raman spectroscopy,” in Laser Handbook, F. J. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2.

H. W. Schrotter and H. W. Klochner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, Berlin, 1979).
[Crossref]

R. B. Miles, J. J. Connors, E. C. Markovitz, and G. J. Roth, “Coherent Anti-Stokes Raman scattering (CARS) and Raman pumping lineshapes in high fields,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel and L. A. Rahn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.912, 184–190 (1988).
[Crossref]

J. P. Looney, G. J. Rosasco, L. A. Rahn, W. S. Hurst, and J. W. Hahn, “Comparison of rotational rate laws to characterize the Raman Q-branch spectrum of CO at 295 K,” Chem. Phys. Lett. (to be published).

J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

J. P. Boquillon, “High resolution coherent anti-Stokes Raman spectroscopy (CARS) of O2and CO2,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel and L. A. Rahn, eds., Proc. Soc. Photo-Opt. Instrum. Eng.912, 160–170 (1988).
[Crossref]

C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids (Clarendon, Oxford, 1984), Vol. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental apparatus for conversion efficiency measurements. M1–M4, mirrors; L1, lens.

Fig. 2
Fig. 2

Experimental apparatus for simultaneous room-air–high-pressure oxygen scanning CARS measurements. M1–M8, mirrors; L1, lens; BS, beam splitter; PMT1, PMT2, photomultiplier tubes; SPEC 1, SPEC 2, spectrometers.

Fig. 3
Fig. 3

Experimental Stokes threshold energies as a function of pressure. (The energy uncertainty is indicated by the filled circles.)

Fig. 4
Fig. 4

Experimental first-Stokes conversion efficiency as a function of pressure at varying pulse energies: ■, 125-mJ/pulse; ×, 100-mJ/pulse; ○, 75-mJ/pulse; #, 50-mJ/pulse; +, 25-mJ/pulse. The curves are meant to clarify the figure and have no theoretical significance.

Fig. 5
Fig. 5

EOUT/EIN as a function of intensity at two cell pressures: ○, 220 psi; ●, 425 psi.

Fig. 6
Fig. 6

Laser-induced fluorescence from a line segment of vibrationally excited oxygen molecules, driven into υ = 1 through stimulated Raman pumping using the high-pressure Raman cell.

Fig. 7
Fig. 7

Oxygen CARS spectra from room air and at 31 amagats.

Fig. 8
Fig. 8

Oxygen CARS spectra from room air and at 26 amagats, illustrating the gain narrowing that occurs at high pump intensities. The room-air J = 7 transition is seen to overlap well with the 26-amagat Q-branch profile.

Fig. 9
Fig. 9

Experimental oxygen self-broadening data of Ref. 31 (filled circles), and MEG law (top) and PEG law (bottom) best fits.

Fig. 10
Fig. 10

Experimental 31-amagat oxygen CARS susceptibility (dotted curves) and MEG law (solid curve, top) and PEG law (solid curve, bottom) predictions. The predictions come from the parameters derived from the best fits to the experimental broadening data.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I s ( L ) I s ( L = 0 ) = exp [ λ s 2 N h ν s ( σ Ω ) f ( v ) I p L ] ,
Δ ω f Δ ω i = { ln ( 2 ) ln [ I S ( L ) I s ( L = 0 ) ] } 0.5 ,
χ 3 = j i N α j h i α i Δ ρ i ( 0 ) ( G 1 ) j i ,
G j i = i ( ω 1 ω 2 ω j ) δ j i + ( Γ j 2 i Δ j ) δ j i + γ j i ( 1 δ j i ) .
γ j i = α P ( 1 + a E i / k T δ 1 + a E i / k T ) 2 exp ( β Δ E j i k T ) ,
γ j i = P ρ j ( 0 ) k = 0 5 c k | j ( j + 1 ) i ( i + 1 ) | k ,

Metrics