Abstract

Excitation and photoionization of Rydberg wave packets are described. Interference of bound-free transitions from many coherently populated Rydberg levels is shown to affect the dependence of the photoionization probability on the duration of interaction. Strong-field interference effects in such a system are described also. The most important of these is the field-induced interference stabilization of Rydberg atoms in a strong ionizing field. The intensity range in which this effect can exist is determined. The results derived are used for a qualitative model describing supercontinuum emission in the process of multiphoton ionization.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Ya. Bersons, “Multiphoton ionization of high Rydberg states,” Phys. Lett. A 84, 364 (1981).
    [Crossref]
  2. N. B. Delone, S. P. Goreslavsky, and V. P. Krainov, “The WKB theory of multiphoton above-threshold ionization,” J. Phys. B 16, 2369 (1983).
    [Crossref]
  3. N. B. Delone, S. P. Goreslavsky, and V. P. Krainov, “Quasi-classical dipole matrix elements for atomic continuum states,” J. Phys. B. 22, 2941 (1989).
    [Crossref]
  4. M. V. Fedorov and A. M. Movsesian, “Wave packets, probabilities of transitions, and multiphoton excitation of atoms,” J. Opt. Soc. Am. B 5, 850 (1988).
    [Crossref]
  5. M. V. Fedorov, M. Yu. Ivanov, and A. M. Movesian, “Strong field photoionization of initially excited hydrogen atom: formation of Rydberg wave packets, its structure and trapping of population at Rydberg levels,” J. Phys. B(to be published).
  6. M. V. Fedorov and A. M. Movsesian, “Field-induced effects of narrowing of photoelectron spectrum and stabilization of Rydberg atoms,” J. Phys. B 21, L155 (1988).
    [Crossref]
  7. M. V. Fedorov and A. M. Movsesian, “Interference suppression of photoionization of Rydberg atoms in a strong electromagnetic field,” J. Opt. Soc. Am. B 6, 928 (1989).
    [Crossref]
  8. P. Coleman and P. Knight, “Population trapping in photoionization to dressed-continuum states,” J. Phys. B 15, L235 (1982);“Two-photon ionization: interference and population trapping,” Phys. Lett. A 102A, 180 (1984).
    [Crossref]
  9. D. A. Cardimona, M. G. Raymer, and C. R. Stroud, “Steady-state quantum interference in resonance fluorescence,” J. Phys. B 15, 55 (1982).
    [Crossref]
  10. Z. Deng and J. Eberly, “Multiphoton absorption above ionization threshold by atoms in strong laser fields,” J. Opt. Soc. Am. B 2, 486 (1985).
    [Crossref]
  11. M. V. Fedorov and A. M. Movsesian, “Ac Stark effect and trapping of population on Rydberg levels in a strong ionizing field,” J. Opt. Soc. Am. B 6, 1504 (1989).
    [Crossref]
  12. M. V. Fedorov, M. Yu. Ivanov, and P. B. Lerner, “Interaction of atoms with supershort laser pulses and generation of supercontinuum,” submitted to J. Phys. B.;in Abstracts of Conference on Super-Intense Laser-Atom Physics, J. H. Eberly and W. G. Greenwood, eds.(University of Rochester, Rochester, New York, 1989), p. 100.
  13. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268 (1986).
    [Crossref] [PubMed]
  14. M. V. Fedorov and A. E. Kazakov, Progr. Quantum Electron. 13, 1 (1989).
    [Crossref]
  15. S. I. Yakovlenko, “Resonance excitation and ionization of atoms by laser pulse” (I. V. Kurtchatov Atomic Energy Institute, Moscow, 1977), preprint 2824.
  16. A. I. Andrjushin, A. E. Kazakov, and M. V. Fedorov, “Threshold peculiarities of atom excitation and ionization by intense electromagnetic field,” Zh. Eksp. Teor. Fiz. 76, 1907 (1979).
  17. E. Kyrölä, “Photoexcitation of a quasi-continuum: connections to few-level dynamics,” J. Opt. Soc. Am. B 1, 737 (1984).
    [Crossref]
  18. G. Alber and P. Zoller, “Near-threshold excitation of Rydberg series by strong laser field,” Phys. Rev. A 37, 377 (1988).
    [Crossref] [PubMed]
  19. M. Yu. Ivanov, Elementary Process in the Field of Laser Radiation (Spectroscopy Soviet, Academy of Sciences of the USSR, Moscow, 1988), p. 33.

1989 (4)

1988 (3)

G. Alber and P. Zoller, “Near-threshold excitation of Rydberg series by strong laser field,” Phys. Rev. A 37, 377 (1988).
[Crossref] [PubMed]

M. V. Fedorov and A. M. Movsesian, “Wave packets, probabilities of transitions, and multiphoton excitation of atoms,” J. Opt. Soc. Am. B 5, 850 (1988).
[Crossref]

M. V. Fedorov and A. M. Movsesian, “Field-induced effects of narrowing of photoelectron spectrum and stabilization of Rydberg atoms,” J. Phys. B 21, L155 (1988).
[Crossref]

1986 (1)

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268 (1986).
[Crossref] [PubMed]

1985 (1)

1984 (1)

1983 (1)

N. B. Delone, S. P. Goreslavsky, and V. P. Krainov, “The WKB theory of multiphoton above-threshold ionization,” J. Phys. B 16, 2369 (1983).
[Crossref]

1982 (2)

P. Coleman and P. Knight, “Population trapping in photoionization to dressed-continuum states,” J. Phys. B 15, L235 (1982);“Two-photon ionization: interference and population trapping,” Phys. Lett. A 102A, 180 (1984).
[Crossref]

D. A. Cardimona, M. G. Raymer, and C. R. Stroud, “Steady-state quantum interference in resonance fluorescence,” J. Phys. B 15, 55 (1982).
[Crossref]

1981 (1)

I. Ya. Bersons, “Multiphoton ionization of high Rydberg states,” Phys. Lett. A 84, 364 (1981).
[Crossref]

1979 (1)

A. I. Andrjushin, A. E. Kazakov, and M. V. Fedorov, “Threshold peculiarities of atom excitation and ionization by intense electromagnetic field,” Zh. Eksp. Teor. Fiz. 76, 1907 (1979).

Alber, G.

G. Alber and P. Zoller, “Near-threshold excitation of Rydberg series by strong laser field,” Phys. Rev. A 37, 377 (1988).
[Crossref] [PubMed]

Andrjushin, A. I.

A. I. Andrjushin, A. E. Kazakov, and M. V. Fedorov, “Threshold peculiarities of atom excitation and ionization by intense electromagnetic field,” Zh. Eksp. Teor. Fiz. 76, 1907 (1979).

Bersons, I. Ya.

I. Ya. Bersons, “Multiphoton ionization of high Rydberg states,” Phys. Lett. A 84, 364 (1981).
[Crossref]

Cardimona, D. A.

D. A. Cardimona, M. G. Raymer, and C. R. Stroud, “Steady-state quantum interference in resonance fluorescence,” J. Phys. B 15, 55 (1982).
[Crossref]

Coleman, P.

P. Coleman and P. Knight, “Population trapping in photoionization to dressed-continuum states,” J. Phys. B 15, L235 (1982);“Two-photon ionization: interference and population trapping,” Phys. Lett. A 102A, 180 (1984).
[Crossref]

Corkum, P. B.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268 (1986).
[Crossref] [PubMed]

Delone, N. B.

N. B. Delone, S. P. Goreslavsky, and V. P. Krainov, “Quasi-classical dipole matrix elements for atomic continuum states,” J. Phys. B. 22, 2941 (1989).
[Crossref]

N. B. Delone, S. P. Goreslavsky, and V. P. Krainov, “The WKB theory of multiphoton above-threshold ionization,” J. Phys. B 16, 2369 (1983).
[Crossref]

Deng, Z.

Eberly, J.

Fedorov, M. V.

M. V. Fedorov and A. M. Movsesian, “Interference suppression of photoionization of Rydberg atoms in a strong electromagnetic field,” J. Opt. Soc. Am. B 6, 928 (1989).
[Crossref]

M. V. Fedorov and A. E. Kazakov, Progr. Quantum Electron. 13, 1 (1989).
[Crossref]

M. V. Fedorov and A. M. Movsesian, “Ac Stark effect and trapping of population on Rydberg levels in a strong ionizing field,” J. Opt. Soc. Am. B 6, 1504 (1989).
[Crossref]

M. V. Fedorov and A. M. Movsesian, “Wave packets, probabilities of transitions, and multiphoton excitation of atoms,” J. Opt. Soc. Am. B 5, 850 (1988).
[Crossref]

M. V. Fedorov and A. M. Movsesian, “Field-induced effects of narrowing of photoelectron spectrum and stabilization of Rydberg atoms,” J. Phys. B 21, L155 (1988).
[Crossref]

A. I. Andrjushin, A. E. Kazakov, and M. V. Fedorov, “Threshold peculiarities of atom excitation and ionization by intense electromagnetic field,” Zh. Eksp. Teor. Fiz. 76, 1907 (1979).

M. V. Fedorov, M. Yu. Ivanov, and A. M. Movesian, “Strong field photoionization of initially excited hydrogen atom: formation of Rydberg wave packets, its structure and trapping of population at Rydberg levels,” J. Phys. B(to be published).

M. V. Fedorov, M. Yu. Ivanov, and P. B. Lerner, “Interaction of atoms with supershort laser pulses and generation of supercontinuum,” submitted to J. Phys. B.;in Abstracts of Conference on Super-Intense Laser-Atom Physics, J. H. Eberly and W. G. Greenwood, eds.(University of Rochester, Rochester, New York, 1989), p. 100.

Goreslavsky, S. P.

N. B. Delone, S. P. Goreslavsky, and V. P. Krainov, “Quasi-classical dipole matrix elements for atomic continuum states,” J. Phys. B. 22, 2941 (1989).
[Crossref]

N. B. Delone, S. P. Goreslavsky, and V. P. Krainov, “The WKB theory of multiphoton above-threshold ionization,” J. Phys. B 16, 2369 (1983).
[Crossref]

Ivanov, M. Yu.

M. V. Fedorov, M. Yu. Ivanov, and P. B. Lerner, “Interaction of atoms with supershort laser pulses and generation of supercontinuum,” submitted to J. Phys. B.;in Abstracts of Conference on Super-Intense Laser-Atom Physics, J. H. Eberly and W. G. Greenwood, eds.(University of Rochester, Rochester, New York, 1989), p. 100.

M. V. Fedorov, M. Yu. Ivanov, and A. M. Movesian, “Strong field photoionization of initially excited hydrogen atom: formation of Rydberg wave packets, its structure and trapping of population at Rydberg levels,” J. Phys. B(to be published).

M. Yu. Ivanov, Elementary Process in the Field of Laser Radiation (Spectroscopy Soviet, Academy of Sciences of the USSR, Moscow, 1988), p. 33.

Kazakov, A. E.

M. V. Fedorov and A. E. Kazakov, Progr. Quantum Electron. 13, 1 (1989).
[Crossref]

A. I. Andrjushin, A. E. Kazakov, and M. V. Fedorov, “Threshold peculiarities of atom excitation and ionization by intense electromagnetic field,” Zh. Eksp. Teor. Fiz. 76, 1907 (1979).

Knight, P.

P. Coleman and P. Knight, “Population trapping in photoionization to dressed-continuum states,” J. Phys. B 15, L235 (1982);“Two-photon ionization: interference and population trapping,” Phys. Lett. A 102A, 180 (1984).
[Crossref]

Krainov, V. P.

N. B. Delone, S. P. Goreslavsky, and V. P. Krainov, “Quasi-classical dipole matrix elements for atomic continuum states,” J. Phys. B. 22, 2941 (1989).
[Crossref]

N. B. Delone, S. P. Goreslavsky, and V. P. Krainov, “The WKB theory of multiphoton above-threshold ionization,” J. Phys. B 16, 2369 (1983).
[Crossref]

Kyrölä, E.

Lerner, P. B.

M. V. Fedorov, M. Yu. Ivanov, and P. B. Lerner, “Interaction of atoms with supershort laser pulses and generation of supercontinuum,” submitted to J. Phys. B.;in Abstracts of Conference on Super-Intense Laser-Atom Physics, J. H. Eberly and W. G. Greenwood, eds.(University of Rochester, Rochester, New York, 1989), p. 100.

Movesian, A. M.

M. V. Fedorov, M. Yu. Ivanov, and A. M. Movesian, “Strong field photoionization of initially excited hydrogen atom: formation of Rydberg wave packets, its structure and trapping of population at Rydberg levels,” J. Phys. B(to be published).

Movsesian, A. M.

Raymer, M. G.

D. A. Cardimona, M. G. Raymer, and C. R. Stroud, “Steady-state quantum interference in resonance fluorescence,” J. Phys. B 15, 55 (1982).
[Crossref]

Rolland, C.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268 (1986).
[Crossref] [PubMed]

Srinivasan-Rao, T.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268 (1986).
[Crossref] [PubMed]

Stroud, C. R.

D. A. Cardimona, M. G. Raymer, and C. R. Stroud, “Steady-state quantum interference in resonance fluorescence,” J. Phys. B 15, 55 (1982).
[Crossref]

Yakovlenko, S. I.

S. I. Yakovlenko, “Resonance excitation and ionization of atoms by laser pulse” (I. V. Kurtchatov Atomic Energy Institute, Moscow, 1977), preprint 2824.

Zoller, P.

G. Alber and P. Zoller, “Near-threshold excitation of Rydberg series by strong laser field,” Phys. Rev. A 37, 377 (1988).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (5)

J. Phys. B (4)

P. Coleman and P. Knight, “Population trapping in photoionization to dressed-continuum states,” J. Phys. B 15, L235 (1982);“Two-photon ionization: interference and population trapping,” Phys. Lett. A 102A, 180 (1984).
[Crossref]

D. A. Cardimona, M. G. Raymer, and C. R. Stroud, “Steady-state quantum interference in resonance fluorescence,” J. Phys. B 15, 55 (1982).
[Crossref]

M. V. Fedorov and A. M. Movsesian, “Field-induced effects of narrowing of photoelectron spectrum and stabilization of Rydberg atoms,” J. Phys. B 21, L155 (1988).
[Crossref]

N. B. Delone, S. P. Goreslavsky, and V. P. Krainov, “The WKB theory of multiphoton above-threshold ionization,” J. Phys. B 16, 2369 (1983).
[Crossref]

J. Phys. B. (1)

N. B. Delone, S. P. Goreslavsky, and V. P. Krainov, “Quasi-classical dipole matrix elements for atomic continuum states,” J. Phys. B. 22, 2941 (1989).
[Crossref]

Phys. Lett. A (1)

I. Ya. Bersons, “Multiphoton ionization of high Rydberg states,” Phys. Lett. A 84, 364 (1981).
[Crossref]

Phys. Rev. A (1)

G. Alber and P. Zoller, “Near-threshold excitation of Rydberg series by strong laser field,” Phys. Rev. A 37, 377 (1988).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268 (1986).
[Crossref] [PubMed]

Progr. Quantum Electron. (1)

M. V. Fedorov and A. E. Kazakov, Progr. Quantum Electron. 13, 1 (1989).
[Crossref]

Zh. Eksp. Teor. Fiz. (1)

A. I. Andrjushin, A. E. Kazakov, and M. V. Fedorov, “Threshold peculiarities of atom excitation and ionization by intense electromagnetic field,” Zh. Eksp. Teor. Fiz. 76, 1907 (1979).

Other (4)

M. Yu. Ivanov, Elementary Process in the Field of Laser Radiation (Spectroscopy Soviet, Academy of Sciences of the USSR, Moscow, 1988), p. 33.

S. I. Yakovlenko, “Resonance excitation and ionization of atoms by laser pulse” (I. V. Kurtchatov Atomic Energy Institute, Moscow, 1977), preprint 2824.

M. V. Fedorov, M. Yu. Ivanov, and P. B. Lerner, “Interaction of atoms with supershort laser pulses and generation of supercontinuum,” submitted to J. Phys. B.;in Abstracts of Conference on Super-Intense Laser-Atom Physics, J. H. Eberly and W. G. Greenwood, eds.(University of Rochester, Rochester, New York, 1989), p. 100.

M. V. Fedorov, M. Yu. Ivanov, and A. M. Movesian, “Strong field photoionization of initially excited hydrogen atom: formation of Rydberg wave packets, its structure and trapping of population at Rydberg levels,” J. Phys. B(to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photoionization probability from the state (3) versus pulse duration τ of the ionizing field.

Fig. 2
Fig. 2

Photoelectron spectrum in the limit of strong field V > 1.

Fig. 3
Fig. 3

Quasi-energy spectrum of the atom and its dependence on V.

Fig. 4
Fig. 4

Time of ionization ti, – versus V.

Fig. 5
Fig. 5

a, Experimentally observed supercontinuum13; b, its representation as a sum of a resonance part plus a background.

Fig. 6
Fig. 6

Time-dependent ac Stark shift of the ionization threshold and of the Rydberg levels and dynamic k-photon resonances.

Fig. 7
Fig. 7

Schemes of transitions12 explaining, a, a resonance part and, b, a background of spontaneous emission giving rise to the observed13 supercontinuum.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

V = α ω 5 / 3 : V n n V ( n n ) 3 / 2 , V n E V n 3 / 2 , V E E V ,
E n E n 0 + ( n n 0 ) n 0 3 .
Ψ = n C n φ n exp ( i E n t ) ,
C n = π 1 / 4 Δ n 1 / 2 exp [ ( n n 0 ) 2 / Δ n 2 ] ,
n | C n | 2 = 1 .
W i = ( π 2 ) 3 / 2 V 2 n 0 3 τ | n ´ C n | 2 = π 2 2 3 / 2 V 2 n 0 3 Δ n τ .
W i ( τ ) ( π 2 / 2 ) V 2 = const .
W i = ( π / 2 ) 3 / 2 V 2 n 0 3 τ n | C n | 2 = ( π / 2 ) 3 / 2 V 2 n 0 3 τ .
W ( E ) t = | V E n 0 | 2 ( E E n 0 ω ) 2 { 1 + π 2 [ n | V n E | 2 ( E E n ω ) 2 ] 2 } .
E ( n ) = ½ ( E n + E n + 1 ) .
Γ i = 2 ( π 3 V 2 n 0 3 ) 1 ,
W ( t ) = 1 exp ( Γ i t ) ,
t i = ( ½ ) π 2 V n 0 3 , W ( t ) = 1 exp ( t / t i ) .
E n E n ( t ) = E n + 2 ( t ) / 4 ω 2 .
E n ( t n ) = E 0 + k ω .
Δ t n min { [ d d t 2 ( t ) 4 ω 2 ] 1 / 2 , [ d 2 d t 2 2 ( t ) 4 ω 2 ] 1 / 3 } .
2 4 ω 3 , E ω .
δ t = | t n + 1 t n | Δ t 2 / n 3 .
Γ 1 / Δ t ( 2 / 4 ω 2 τ ) 1 / 2
Δ n Γ n 3 Δ t / δ t 1 .
n c ( τ / 2 π ) 1 / 3 ;
( d W ( res ) / d ω ) max 1 / ( λ 3 2 ) .

Metrics