Abstract

A linearized quantum theory of soliton squeezing and detection is presented. The linearization reduces the quantum problem to a classical one. The classical formulation provides physical insight. It is shown that a quantized soliton exhibits uncertainties in photon number and phase, position (time), and momentum (frequency). Detectors for the measurement of all four operators are discussed. The squeezing of the soliton in the fiber is analyzed. An optimal homodyne detector for detection of the squeezing is presented that suppresses the noise associated with the continuum and the uncertainties in position and momentum.

© 1990 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription