Abstract

We present experimental results on Smith–Purcell radiation. Our primary interest was in the measurement of radiation angular distribution, output power, and spectral content. The variations of the angular distribution and the output power were shown for different electron-beam voltages and currents. The output power measured with a 3-mA and 120-kV electron beam was ∼30 μW/cm2-sr. The spectral analysis of the radiation shows excellent agreement between the measurements and the theoretical predictions. Our results were compared with those obtained by Gover et al., [ J. Opt. Soc. Am. B 1, 723 ( 1984)].

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
    [Crossref]
  2. W. W. Salisbury, “Generation of light by an electron beam grazing a diffraction grating,” Technical Documentary Rep. AFAL-TR-65-40, prepared by Varo, Inc., under U.S. Air Force contract AF 33(657)-8933 (Varo, Inc., Garland, Texas, 1965).
  3. W. W. Salisbury, “Generation of light from free electrons,” J. Opt. Soc. Am. 60, 1279–1284 (1970);“Generation of light from free electrons,” Science 154, 386–388 (1966).
    [Crossref] [PubMed]
  4. J. P. Bachheimer, “Experimental investigation of the interaction radiation of a moving electron with a metallic grating: the Smith–Purcell effect,” Phys. Rev. B 6, 2985–2994 (1972).
    [Crossref]
  5. E. L. Burdette and G. Hughes, “Smith–Purcell radiation from small gratings,” Phys. Rev. A 14, 1766–1769 (1976).
    [Crossref]
  6. A. Gover, P. Dvorkis, and V. Elisha, “Angular radiation pattern of Smith-Purcell radiation,” J. Opt. Soc. Am. B 1, 723–728 (1984).
    [Crossref]
  7. I. Shih, W. W. Salisbury, D. L. Masters, and D. B. Chang, “Experimental investigations of Smith–Purcell radiation,” J. Opt. Soc. Am. B 7, 351–356 (1990).
    [Crossref]
  8. D. B. Chang and J. C. McDaniel, “Enhanced bremsstrahlung from electrons traversing periodic targets,” J. Opt. Soc. Am. B 7, 239–242 (1990).
    [Crossref]
  9. G. Toraldo di Francia, “On the theory of some Čerenkovian effects,” Nuovo Cimento 16, 61 (1960).
    [Crossref]
  10. C. W. Barnes and K. G. Dedrick, “Radiation by an electron beam interacting with a diffraction grating. Two dimensional theory,” J. Appl. Phys. 37, 411 (1966).
    [Crossref]
  11. P. M. van den Berg, “Smith–Purcell radiation from a line charge moving parallel to a reflection grating,” J. Opt. Soc. Am. 63, 689–698 (1973).
    [Crossref]
  12. J. C. McDaniel, D. B. Chang, J. E. Drummond, and W. W. Salisbury, “Smith–Purcell radiation in the high conductivity and plasma frequency limits,” Appl. Opt. 28, 4924–4929 (1989).
    [Crossref] [PubMed]
  13. D. B. Chang and J. C. McDaniel, “A compact short wavelength free electron laser,” Phys Rev. Lett. 63, 1066 (1989).
    [Crossref] [PubMed]

1990 (2)

1989 (2)

1984 (1)

1976 (1)

E. L. Burdette and G. Hughes, “Smith–Purcell radiation from small gratings,” Phys. Rev. A 14, 1766–1769 (1976).
[Crossref]

1973 (1)

1972 (1)

J. P. Bachheimer, “Experimental investigation of the interaction radiation of a moving electron with a metallic grating: the Smith–Purcell effect,” Phys. Rev. B 6, 2985–2994 (1972).
[Crossref]

1970 (1)

1966 (1)

C. W. Barnes and K. G. Dedrick, “Radiation by an electron beam interacting with a diffraction grating. Two dimensional theory,” J. Appl. Phys. 37, 411 (1966).
[Crossref]

1960 (1)

G. Toraldo di Francia, “On the theory of some Čerenkovian effects,” Nuovo Cimento 16, 61 (1960).
[Crossref]

1953 (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
[Crossref]

Bachheimer, J. P.

J. P. Bachheimer, “Experimental investigation of the interaction radiation of a moving electron with a metallic grating: the Smith–Purcell effect,” Phys. Rev. B 6, 2985–2994 (1972).
[Crossref]

Barnes, C. W.

C. W. Barnes and K. G. Dedrick, “Radiation by an electron beam interacting with a diffraction grating. Two dimensional theory,” J. Appl. Phys. 37, 411 (1966).
[Crossref]

Burdette, E. L.

E. L. Burdette and G. Hughes, “Smith–Purcell radiation from small gratings,” Phys. Rev. A 14, 1766–1769 (1976).
[Crossref]

Chang, D. B.

Dedrick, K. G.

C. W. Barnes and K. G. Dedrick, “Radiation by an electron beam interacting with a diffraction grating. Two dimensional theory,” J. Appl. Phys. 37, 411 (1966).
[Crossref]

Drummond, J. E.

Dvorkis, P.

Elisha, V.

Gover, A.

Hughes, G.

E. L. Burdette and G. Hughes, “Smith–Purcell radiation from small gratings,” Phys. Rev. A 14, 1766–1769 (1976).
[Crossref]

Masters, D. L.

McDaniel, J. C.

Purcell, E. M.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
[Crossref]

Salisbury, W. W.

Shih, I.

Smith, S. J.

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
[Crossref]

Toraldo di Francia, G.

G. Toraldo di Francia, “On the theory of some Čerenkovian effects,” Nuovo Cimento 16, 61 (1960).
[Crossref]

van den Berg, P. M.

Appl. Opt. (1)

J. Appl. Phys. (1)

C. W. Barnes and K. G. Dedrick, “Radiation by an electron beam interacting with a diffraction grating. Two dimensional theory,” J. Appl. Phys. 37, 411 (1966).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (3)

Nuovo Cimento (1)

G. Toraldo di Francia, “On the theory of some Čerenkovian effects,” Nuovo Cimento 16, 61 (1960).
[Crossref]

Phys Rev. Lett. (1)

D. B. Chang and J. C. McDaniel, “A compact short wavelength free electron laser,” Phys Rev. Lett. 63, 1066 (1989).
[Crossref] [PubMed]

Phys. Rev. (1)

S. J. Smith and E. M. Purcell, “Visible light from localized surface charges moving across a grating,” Phys. Rev. 92, 1069 (1953).
[Crossref]

Phys. Rev. A (1)

E. L. Burdette and G. Hughes, “Smith–Purcell radiation from small gratings,” Phys. Rev. A 14, 1766–1769 (1976).
[Crossref]

Phys. Rev. B (1)

J. P. Bachheimer, “Experimental investigation of the interaction radiation of a moving electron with a metallic grating: the Smith–Purcell effect,” Phys. Rev. B 6, 2985–2994 (1972).
[Crossref]

Other (1)

W. W. Salisbury, “Generation of light by an electron beam grazing a diffraction grating,” Technical Documentary Rep. AFAL-TR-65-40, prepared by Varo, Inc., under U.S. Air Force contract AF 33(657)-8933 (Varo, Inc., Garland, Texas, 1965).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Radiation measurement apparatus.

Fig. 2
Fig. 2

Energy probe.

Fig. 3
Fig. 3

Typical angular distribution, ambient light, and dark reference.

Fig. 4
Fig. 4

Angular distribution curve with changing currents as a fixed voltage.

Fig. 5
Fig. 5

Angular distribution curve with changing voltages at a fixed current.

Fig. 6
Fig. 6

Angular distribution of radiation wavelength as predicted by Eq. (1).

Fig. 7
Fig. 7

Transmission curve of a typical filter.

Fig. 8
Fig. 8

Radiation pattern when no filters are used.

Fig. 9
Fig. 9

Radiation patterns obtained by using eight different filters.

Tables (2)

Tables Icon

Table 1 Comparison of Experimental Results with Theoretical Predictions for a 110-keV Electron Beam

Tables Icon

Table 2 Comparison of Experimental Results with Theoretical Predictions for a 100-keV Electron Beam

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ = a [ ( c / υ ) cos θ ] ,
Δ λ = a sin θ Δ θ .
d P d Ω = 1 8 π e 2 A 2 ( 2 π a ) 3 ( υ c ) 3 υ e 2 l ( 2 π / a ) 3 [ 1 ( υ / c ) cos θ ] [ 1 ( υ / c ) cos θ ] 3 × [ ( υ / c ) 2 sin 4 θ 1 ( υ / c ) cos θ + cos 2 θ ( υ / c ) cos θ sin 2 θ 1 ( υ / c ) cos θ ] ,
P l = d P d Ω n d S d l d S = n ( d P d Ω ) d l .
P = n A d P d Ω d l .

Metrics