Abstract

The dielectric constants of solutions of 4-amino-4′-dicyanovinylazobenzene chromophore (DCV) at a wide range of concentrations in dioxane were measured. The chromophore dipole moment was determined to be 9.4 D in dioxane and in methyl trimethylacetate. Somewhat smaller values for the dipole moment were obtained when the chromophore was dissolved in chloroform or when it was covalently attached to a polymethacrylate backbone. No significant nonlinearity was observed in plots of dielectric constant versus concentration, even at concentrations approaching the solubility limit. Theoretical modeling indicates that such nonlinearity would have been observed if appreciable aggregation had occurred. It is predicted that dipole-dipole aggregation should not diminish the electric-field-induced alignment achievable in macroscopically homogeneous DCV-containing materials.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
    [Crossref]
  2. H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, and H. E. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor–acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561 (1987).
    [Crossref]
  3. H. E. Katz, C. W. Dirk, M. L. Schilling, K. D. Singer, and J. E. Sohn, “Optimization of second-order nonlinear optical susceptibilities in organic materials,” Mat. Res. Soc. Symp. Proc. 109, 127 (1988).
    [Crossref]
  4. W. R. Holland, AT&T Bell Laboratories, Box 900, Princeton, New Jersey 08540 (personal communication).
  5. M. L. Schilling, H. E. Katz, and D. I. Cox, “Synthesis and reactions of cyanovinyl-substituted benzenediazonium salts for nonlinear optics,” J. Org. Chem. 53, 5538 (1988).
    [Crossref]
  6. T. L. Brown, “The electronic properties of alkyl groups. II. The dipole moments of alkyl benzenes and derivatives,” J. Am. Chem. Soc. 81, 3232 (1959).
    [Crossref]
  7. E. W. Rusche, “The dielectric constant of water and supercooled water from −5 degrees C to 25 degrees C,” Ph.D. dissertation (New Mexico State University, Las Cruces, N.M., 1966);G. A. Vidulich, “I. The absolute dielectric constants of light and heavy water between 0 and 40 degreesC. II. The transference numbers of lithium chloride,” Ph.D. dissertation (Brown University, Providence, R.I., 1964).
  8. C. J. Bottcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1952).
  9. L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58, 1486 (1936).
    [Crossref]
  10. H. E. Katz and M. L. Schilling, “Synthetic approaches to head-to-tail linked azo dyes for nonlinear optical applications,” Chem. Mater.1 (to be published).
  11. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987).
    [Crossref]
  12. Y. Y. Akhadov, Dielectric Properties of Binary Solutions (Pergamon, New York, 1980).
  13. B. N. Khare, S. S. Mitra, and G. Lengyel, “Infrared and dielectric studies of chloroform as proton donor in hydrogen-bond formation,” J. Chem. Phys. 47, 5173 (1967).Calculation of dimer concentration assumes ideal dilute solution behavior, with activity coefficients set to unity. A slightly more rigorous mathematical model could have been formulated in terms of the variation in monomer and dimer activities with solute concentration. Experimentally, it would be possible to determine concentrations spectroscopially and activities by osmometry, to obtain the activity coefficients. At the mole fractions considered here, ideal solution behavior is probably a reasonable assumption;see M. L. McGlashan, Chemical Thermodynamics (Academic Press, New York, 1979).
    [Crossref]
  14. D. J. Walsh, “Polymer blends,” in Comprehensive Polymer Science, C. Booth and C. Price, eds. (Pergamon, Oxford, 1989), Vol. 2, p. 135.
    [Crossref]

1988 (3)

H. E. Katz, C. W. Dirk, M. L. Schilling, K. D. Singer, and J. E. Sohn, “Optimization of second-order nonlinear optical susceptibilities in organic materials,” Mat. Res. Soc. Symp. Proc. 109, 127 (1988).
[Crossref]

M. L. Schilling, H. E. Katz, and D. I. Cox, “Synthesis and reactions of cyanovinyl-substituted benzenediazonium salts for nonlinear optics,” J. Org. Chem. 53, 5538 (1988).
[Crossref]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[Crossref]

1987 (2)

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, and H. E. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor–acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561 (1987).
[Crossref]

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987).
[Crossref]

1967 (1)

B. N. Khare, S. S. Mitra, and G. Lengyel, “Infrared and dielectric studies of chloroform as proton donor in hydrogen-bond formation,” J. Chem. Phys. 47, 5173 (1967).Calculation of dimer concentration assumes ideal dilute solution behavior, with activity coefficients set to unity. A slightly more rigorous mathematical model could have been formulated in terms of the variation in monomer and dimer activities with solute concentration. Experimentally, it would be possible to determine concentrations spectroscopially and activities by osmometry, to obtain the activity coefficients. At the mole fractions considered here, ideal solution behavior is probably a reasonable assumption;see M. L. McGlashan, Chemical Thermodynamics (Academic Press, New York, 1979).
[Crossref]

1959 (1)

T. L. Brown, “The electronic properties of alkyl groups. II. The dipole moments of alkyl benzenes and derivatives,” J. Am. Chem. Soc. 81, 3232 (1959).
[Crossref]

1936 (1)

L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58, 1486 (1936).
[Crossref]

Akhadov, Y. Y.

Y. Y. Akhadov, Dielectric Properties of Binary Solutions (Pergamon, New York, 1980).

Bottcher, C. J.

C. J. Bottcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1952).

Brown, T. L.

T. L. Brown, “The electronic properties of alkyl groups. II. The dipole moments of alkyl benzenes and derivatives,” J. Am. Chem. Soc. 81, 3232 (1959).
[Crossref]

Comizzoli, R. B.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[Crossref]

Cox, D. I.

M. L. Schilling, H. E. Katz, and D. I. Cox, “Synthesis and reactions of cyanovinyl-substituted benzenediazonium salts for nonlinear optics,” J. Org. Chem. 53, 5538 (1988).
[Crossref]

Dirk, C. W.

H. E. Katz, C. W. Dirk, M. L. Schilling, K. D. Singer, and J. E. Sohn, “Optimization of second-order nonlinear optical susceptibilities in organic materials,” Mat. Res. Soc. Symp. Proc. 109, 127 (1988).
[Crossref]

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, and H. E. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor–acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561 (1987).
[Crossref]

Gordon, H. E.

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, and H. E. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor–acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561 (1987).
[Crossref]

Holland, W. R.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[Crossref]

W. R. Holland, AT&T Bell Laboratories, Box 900, Princeton, New Jersey 08540 (personal communication).

Katz, H. E.

M. L. Schilling, H. E. Katz, and D. I. Cox, “Synthesis and reactions of cyanovinyl-substituted benzenediazonium salts for nonlinear optics,” J. Org. Chem. 53, 5538 (1988).
[Crossref]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[Crossref]

H. E. Katz, C. W. Dirk, M. L. Schilling, K. D. Singer, and J. E. Sohn, “Optimization of second-order nonlinear optical susceptibilities in organic materials,” Mat. Res. Soc. Symp. Proc. 109, 127 (1988).
[Crossref]

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, and H. E. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor–acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561 (1987).
[Crossref]

H. E. Katz and M. L. Schilling, “Synthetic approaches to head-to-tail linked azo dyes for nonlinear optical applications,” Chem. Mater.1 (to be published).

Khare, B. N.

B. N. Khare, S. S. Mitra, and G. Lengyel, “Infrared and dielectric studies of chloroform as proton donor in hydrogen-bond formation,” J. Chem. Phys. 47, 5173 (1967).Calculation of dimer concentration assumes ideal dilute solution behavior, with activity coefficients set to unity. A slightly more rigorous mathematical model could have been formulated in terms of the variation in monomer and dimer activities with solute concentration. Experimentally, it would be possible to determine concentrations spectroscopially and activities by osmometry, to obtain the activity coefficients. At the mole fractions considered here, ideal solution behavior is probably a reasonable assumption;see M. L. McGlashan, Chemical Thermodynamics (Academic Press, New York, 1979).
[Crossref]

King, L. A.

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, and H. E. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor–acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561 (1987).
[Crossref]

Kuzyk, M. G.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[Crossref]

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987).
[Crossref]

Lalama, S. J.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[Crossref]

Lengyel, G.

B. N. Khare, S. S. Mitra, and G. Lengyel, “Infrared and dielectric studies of chloroform as proton donor in hydrogen-bond formation,” J. Chem. Phys. 47, 5173 (1967).Calculation of dimer concentration assumes ideal dilute solution behavior, with activity coefficients set to unity. A slightly more rigorous mathematical model could have been formulated in terms of the variation in monomer and dimer activities with solute concentration. Experimentally, it would be possible to determine concentrations spectroscopially and activities by osmometry, to obtain the activity coefficients. At the mole fractions considered here, ideal solution behavior is probably a reasonable assumption;see M. L. McGlashan, Chemical Thermodynamics (Academic Press, New York, 1979).
[Crossref]

Mitra, S. S.

B. N. Khare, S. S. Mitra, and G. Lengyel, “Infrared and dielectric studies of chloroform as proton donor in hydrogen-bond formation,” J. Chem. Phys. 47, 5173 (1967).Calculation of dimer concentration assumes ideal dilute solution behavior, with activity coefficients set to unity. A slightly more rigorous mathematical model could have been formulated in terms of the variation in monomer and dimer activities with solute concentration. Experimentally, it would be possible to determine concentrations spectroscopially and activities by osmometry, to obtain the activity coefficients. At the mole fractions considered here, ideal solution behavior is probably a reasonable assumption;see M. L. McGlashan, Chemical Thermodynamics (Academic Press, New York, 1979).
[Crossref]

Onsager, L.

L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58, 1486 (1936).
[Crossref]

Rusche, E. W.

E. W. Rusche, “The dielectric constant of water and supercooled water from −5 degrees C to 25 degrees C,” Ph.D. dissertation (New Mexico State University, Las Cruces, N.M., 1966);G. A. Vidulich, “I. The absolute dielectric constants of light and heavy water between 0 and 40 degreesC. II. The transference numbers of lithium chloride,” Ph.D. dissertation (Brown University, Providence, R.I., 1964).

Schilling, M. L.

M. L. Schilling, H. E. Katz, and D. I. Cox, “Synthesis and reactions of cyanovinyl-substituted benzenediazonium salts for nonlinear optics,” J. Org. Chem. 53, 5538 (1988).
[Crossref]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[Crossref]

H. E. Katz, C. W. Dirk, M. L. Schilling, K. D. Singer, and J. E. Sohn, “Optimization of second-order nonlinear optical susceptibilities in organic materials,” Mat. Res. Soc. Symp. Proc. 109, 127 (1988).
[Crossref]

H. E. Katz and M. L. Schilling, “Synthetic approaches to head-to-tail linked azo dyes for nonlinear optical applications,” Chem. Mater.1 (to be published).

Singer, K. D.

H. E. Katz, C. W. Dirk, M. L. Schilling, K. D. Singer, and J. E. Sohn, “Optimization of second-order nonlinear optical susceptibilities in organic materials,” Mat. Res. Soc. Symp. Proc. 109, 127 (1988).
[Crossref]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[Crossref]

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, and H. E. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor–acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561 (1987).
[Crossref]

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987).
[Crossref]

Sohn, J. E.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[Crossref]

H. E. Katz, C. W. Dirk, M. L. Schilling, K. D. Singer, and J. E. Sohn, “Optimization of second-order nonlinear optical susceptibilities in organic materials,” Mat. Res. Soc. Symp. Proc. 109, 127 (1988).
[Crossref]

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, and H. E. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor–acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561 (1987).
[Crossref]

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987).
[Crossref]

Walsh, D. J.

D. J. Walsh, “Polymer blends,” in Comprehensive Polymer Science, C. Booth and C. Price, eds. (Pergamon, Oxford, 1989), Vol. 2, p. 135.
[Crossref]

Appl. Phys. Lett. (1)

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[Crossref]

J. Am. Chem. Soc. (3)

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, and H. E. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor–acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561 (1987).
[Crossref]

T. L. Brown, “The electronic properties of alkyl groups. II. The dipole moments of alkyl benzenes and derivatives,” J. Am. Chem. Soc. 81, 3232 (1959).
[Crossref]

L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58, 1486 (1936).
[Crossref]

J. Chem. Phys. (1)

B. N. Khare, S. S. Mitra, and G. Lengyel, “Infrared and dielectric studies of chloroform as proton donor in hydrogen-bond formation,” J. Chem. Phys. 47, 5173 (1967).Calculation of dimer concentration assumes ideal dilute solution behavior, with activity coefficients set to unity. A slightly more rigorous mathematical model could have been formulated in terms of the variation in monomer and dimer activities with solute concentration. Experimentally, it would be possible to determine concentrations spectroscopially and activities by osmometry, to obtain the activity coefficients. At the mole fractions considered here, ideal solution behavior is probably a reasonable assumption;see M. L. McGlashan, Chemical Thermodynamics (Academic Press, New York, 1979).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Org. Chem. (1)

M. L. Schilling, H. E. Katz, and D. I. Cox, “Synthesis and reactions of cyanovinyl-substituted benzenediazonium salts for nonlinear optics,” J. Org. Chem. 53, 5538 (1988).
[Crossref]

Mat. Res. Soc. Symp. Proc. (1)

H. E. Katz, C. W. Dirk, M. L. Schilling, K. D. Singer, and J. E. Sohn, “Optimization of second-order nonlinear optical susceptibilities in organic materials,” Mat. Res. Soc. Symp. Proc. 109, 127 (1988).
[Crossref]

Other (6)

W. R. Holland, AT&T Bell Laboratories, Box 900, Princeton, New Jersey 08540 (personal communication).

H. E. Katz and M. L. Schilling, “Synthetic approaches to head-to-tail linked azo dyes for nonlinear optical applications,” Chem. Mater.1 (to be published).

E. W. Rusche, “The dielectric constant of water and supercooled water from −5 degrees C to 25 degrees C,” Ph.D. dissertation (New Mexico State University, Las Cruces, N.M., 1966);G. A. Vidulich, “I. The absolute dielectric constants of light and heavy water between 0 and 40 degreesC. II. The transference numbers of lithium chloride,” Ph.D. dissertation (Brown University, Providence, R.I., 1964).

C. J. Bottcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1952).

Y. Y. Akhadov, Dielectric Properties of Binary Solutions (Pergamon, New York, 1980).

D. J. Walsh, “Polymer blends,” in Comprehensive Polymer Science, C. Booth and C. Price, eds. (Pergamon, Oxford, 1989), Vol. 2, p. 135.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structure diagrams of dyes 1–4.

Fig. 2
Fig. 2

Dielectric constant versus concentration of dioxane solutions present as an equimolar mixture of dyes 3 and 4. The square point was obtained independently, and the circle point was from a solution of dye 3 alone.

Fig. 3
Fig. 3

Dielectric constant versus DCV concentration of dioxane solutions of dye 2.

Fig. 4
Fig. 4

Dielectric constant of the monomer mixture in dioxane versus concentration, fitted to the nondifferentiated Onsager equation.

Fig. 5
Fig. 5

Dielectric constant of the monomer mixture in dioxane versus concentration, fit to the Onsager equation incorporating antiparallel dimers at a concentration defined by Ka of 5.

Tables (1)

Tables Icon

Table 1 Dipole Moments of DCV in Various Media

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 4 π = i [ s i ] ( α i f i + 1 μ i 2 f i 3 kT ) ,

Metrics