Abstract

We demonstrate holographic fixing by means of a thermal cycling procedure in pure and doped photorefractive KNbO3 crystals. At elevated temperatures (70–100°C) the photoinduced grating is compensated for by a secondary grating that is formed by charge carriers whose thermal activation energy is ~1.0 eV. The secondary carriers are stable at room temperature and form the fixed grating after cooling the crystal. They are believed to be represented by ions or ion vacancies. By using our fixing mechanisms the holographic storage time in KNbO3 can be increased by a factor of 106.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
    [CrossRef]
  2. P. Günter, F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27–38 (1978).
    [CrossRef]
  3. P. Günter, “Electro-optical properties of KNbO3,” Opt. Commun. 11, 285–290 (1974).
    [CrossRef]
  4. C. Medrano, E. Voit, P. Amrhein, P. Günter, “Optimization of the photorefractive properties of KNbO3crystals,” J. Appl. Phys. 64, 4668–4673 (1988).
    [CrossRef]
  5. P. Günter, A. Krumins, “High-sensitivity read-write volume holographic storage in reduced KNbO3crystals,” Appl. Phys. 23, 199–207 (1980).
    [CrossRef]
  6. P. Günter, “Coherent light amplification and optical phase conjugation in photoconductive electro-optic materials,” Ferroelectrics 40, 43–47 (1982).
    [CrossRef]
  7. J. J. Amoedi, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  8. D. L. Staebler, “Ferroelectric crystals,” in Holographic Recording Materials, H. M. Smith, ed. (Springer-Verlag, Berlin, 1977), pp. 101–132.
    [CrossRef]
  9. L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
    [CrossRef]
  10. F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
    [CrossRef]
  11. J. B. Thaxter, M. Kestigian, “Unique properties of SBN and their use in a layered optical memory,” Appl. Opt. 13, 913–924 (1974).
    [CrossRef] [PubMed]
  12. S. Redfield, L. Hesselink, “Enhanced nondestructive holographic readout in strontium barium niobate,” Opt. Lett. 13, 880–882 (1988).
    [CrossRef] [PubMed]
  13. D. von der Linde, A. M. Glass, K. F. Rogers,, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
    [CrossRef]
  14. D. von der Linde, A. M. Glass, K. F. Rogers,, “High-sensitivity optical recording in KTN by two photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
    [CrossRef]
  15. S. W. McCahon, D. Rytz, G. C. Valley, M. B. Klein, B. A. Wechsler, “Hologram fixing in Bi12TiO20using heating and an ac electric field,” Appl. Opt. 28, 1967–1969 (1989).
    [CrossRef] [PubMed]
  16. G. S. Trofimov, S. I. Stepanov, “Electrical development of a hologram in a Bi12SiO20crystal,” Sov. Tech. Phys. Lett. 10, 282–283 (1984).
  17. J. P. Herriau, J. P. Huignard, “Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
    [CrossRef]
  18. A. Delboulbe, C. Fromont, J. P. Herriau, S. Mallick, J. P. Huignard, “Quasi-nondestructive readout of holographically stored information in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 55, 713–715 (1989).
    [CrossRef]
  19. M. Miteva, L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun. 67, 192–194 (1988).
    [CrossRef]
  20. G. Montemezzani, M. Ingold, H. Looser, P. Günter, “Multiple photorefractive gratings in Ce-doped LiNbO3and KNbO3 crystals,” Ferroelectrics 92, 281–287 (1989).
    [CrossRef]
  21. Wu Xing, H. Looser, H. Wüest, H. Arena, “Progress in KNbO3 crystal growth,” J. Cryst. Growth 78, 431–437 (1986).
    [CrossRef]
  22. E. Voit, “Photorefractive properties and applications of KNbO3crystals,” Ph.D. dissertation ETH Nr. 8555 (Swiss Federal Institute of Technology, Zürich, 1988).
  23. E. Krätzig, “Photorefractive effects and photoconductivity in LiNbO3:Fe,” Ferroelectrics 21, 635–636 (1978).
    [CrossRef]
  24. R. Orlowski, E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
    [CrossRef]
  25. A. E. Krumins, P. Günter, “Photovoltaic effect and photoconductivity in reduced potassium niobate crystals,” Phys. Status Solidi A 55, K185–K189 (1979).
    [CrossRef]
  26. G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363–3366 (1986).
    [CrossRef]
  27. H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
    [CrossRef]
  28. A. Förster, H. Hesse, S. Kapphan, M. Wöhlecke, “OH stretching vibrations in monodomain KNbO3,” Solid State Commun. 57, 373–375 (1986).
    [CrossRef]
  29. R. Matull, R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
    [CrossRef]
  30. E. M. Panchenko, O. I. Prokopalo, A. E. Panich, V. A. Zagoruiko, Yu. A. Trusov, “Electret state in oxides of the perovskite family,” J. Phys. D 22, 1372–1374 (1989).
    [CrossRef]
  31. E. I. Bondarenko, V. A. Zagoruiko, Yu. S. Kuz’minov, A. N. Pavlov, E. M. Panchenko, O. I. Prokopalo, “Model of the electret state in oxygen-octahedral materials,” Sov. Phys. Solid State 27, 629–630 (1985).
  32. J. Blanc, D. L. Staebler, “Electrocoloration in SrTiO3: vacancy drift and oxidation-reduction of transition metals,” Phys. Rev. B 4, 3548–3557 (1971).
    [CrossRef]

1989 (5)

A. Delboulbe, C. Fromont, J. P. Herriau, S. Mallick, J. P. Huignard, “Quasi-nondestructive readout of holographically stored information in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 55, 713–715 (1989).
[CrossRef]

G. Montemezzani, M. Ingold, H. Looser, P. Günter, “Multiple photorefractive gratings in Ce-doped LiNbO3and KNbO3 crystals,” Ferroelectrics 92, 281–287 (1989).
[CrossRef]

E. M. Panchenko, O. I. Prokopalo, A. E. Panich, V. A. Zagoruiko, Yu. A. Trusov, “Electret state in oxides of the perovskite family,” J. Phys. D 22, 1372–1374 (1989).
[CrossRef]

L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
[CrossRef]

S. W. McCahon, D. Rytz, G. C. Valley, M. B. Klein, B. A. Wechsler, “Hologram fixing in Bi12TiO20using heating and an ac electric field,” Appl. Opt. 28, 1967–1969 (1989).
[CrossRef] [PubMed]

1988 (4)

S. Redfield, L. Hesselink, “Enhanced nondestructive holographic readout in strontium barium niobate,” Opt. Lett. 13, 880–882 (1988).
[CrossRef] [PubMed]

R. Matull, R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
[CrossRef]

C. Medrano, E. Voit, P. Amrhein, P. Günter, “Optimization of the photorefractive properties of KNbO3crystals,” J. Appl. Phys. 64, 4668–4673 (1988).
[CrossRef]

M. Miteva, L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun. 67, 192–194 (1988).
[CrossRef]

1986 (4)

J. P. Herriau, J. P. Huignard, “Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
[CrossRef]

Wu Xing, H. Looser, H. Wüest, H. Arena, “Progress in KNbO3 crystal growth,” J. Cryst. Growth 78, 431–437 (1986).
[CrossRef]

G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363–3366 (1986).
[CrossRef]

A. Förster, H. Hesse, S. Kapphan, M. Wöhlecke, “OH stretching vibrations in monodomain KNbO3,” Solid State Commun. 57, 373–375 (1986).
[CrossRef]

1985 (1)

E. I. Bondarenko, V. A. Zagoruiko, Yu. S. Kuz’minov, A. N. Pavlov, E. M. Panchenko, O. I. Prokopalo, “Model of the electret state in oxygen-octahedral materials,” Sov. Phys. Solid State 27, 629–630 (1985).

1984 (1)

G. S. Trofimov, S. I. Stepanov, “Electrical development of a hologram in a Bi12SiO20crystal,” Sov. Tech. Phys. Lett. 10, 282–283 (1984).

1982 (2)

P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

P. Günter, “Coherent light amplification and optical phase conjugation in photoconductive electro-optic materials,” Ferroelectrics 40, 43–47 (1982).
[CrossRef]

1981 (1)

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

1980 (1)

P. Günter, A. Krumins, “High-sensitivity read-write volume holographic storage in reduced KNbO3crystals,” Appl. Phys. 23, 199–207 (1980).
[CrossRef]

1979 (1)

A. E. Krumins, P. Günter, “Photovoltaic effect and photoconductivity in reduced potassium niobate crystals,” Phys. Status Solidi A 55, K185–K189 (1979).
[CrossRef]

1978 (3)

P. Günter, F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27–38 (1978).
[CrossRef]

E. Krätzig, “Photorefractive effects and photoconductivity in LiNbO3:Fe,” Ferroelectrics 21, 635–636 (1978).
[CrossRef]

R. Orlowski, E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

1975 (1)

D. von der Linde, A. M. Glass, K. F. Rogers,, “High-sensitivity optical recording in KTN by two photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

1974 (3)

J. B. Thaxter, M. Kestigian, “Unique properties of SBN and their use in a layered optical memory,” Appl. Opt. 13, 913–924 (1974).
[CrossRef] [PubMed]

D. von der Linde, A. M. Glass, K. F. Rogers,, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

P. Günter, “Electro-optical properties of KNbO3,” Opt. Commun. 11, 285–290 (1974).
[CrossRef]

1972 (1)

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

1971 (2)

J. J. Amoedi, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

J. Blanc, D. L. Staebler, “Electrocoloration in SrTiO3: vacancy drift and oxidation-reduction of transition metals,” Phys. Rev. B 4, 3548–3557 (1971).
[CrossRef]

Amoedi, J. J.

J. J. Amoedi, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Amrhein, P.

C. Medrano, E. Voit, P. Amrhein, P. Günter, “Optimization of the photorefractive properties of KNbO3crystals,” J. Appl. Phys. 64, 4668–4673 (1988).
[CrossRef]

Arena, H.

Wu Xing, H. Looser, H. Wüest, H. Arena, “Progress in KNbO3 crystal growth,” J. Cryst. Growth 78, 431–437 (1986).
[CrossRef]

Arizmendi, L.

L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
[CrossRef]

Bismuth, G.

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Blanc, J.

J. Blanc, D. L. Staebler, “Electrocoloration in SrTiO3: vacancy drift and oxidation-reduction of transition metals,” Phys. Rev. B 4, 3548–3557 (1971).
[CrossRef]

Bondarenko, E. I.

E. I. Bondarenko, V. A. Zagoruiko, Yu. S. Kuz’minov, A. N. Pavlov, E. M. Panchenko, O. I. Prokopalo, “Model of the electret state in oxygen-octahedral materials,” Sov. Phys. Solid State 27, 629–630 (1985).

Delboulbe, A.

A. Delboulbe, C. Fromont, J. P. Herriau, S. Mallick, J. P. Huignard, “Quasi-nondestructive readout of holographically stored information in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 55, 713–715 (1989).
[CrossRef]

Förster, A.

A. Förster, H. Hesse, S. Kapphan, M. Wöhlecke, “OH stretching vibrations in monodomain KNbO3,” Solid State Commun. 57, 373–375 (1986).
[CrossRef]

Fromont, C.

A. Delboulbe, C. Fromont, J. P. Herriau, S. Mallick, J. P. Huignard, “Quasi-nondestructive readout of holographically stored information in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 55, 713–715 (1989).
[CrossRef]

Glass, A. M.

D. von der Linde, A. M. Glass, K. F. Rogers,, “High-sensitivity optical recording in KTN by two photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rogers,, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Günter, P.

G. Montemezzani, M. Ingold, H. Looser, P. Günter, “Multiple photorefractive gratings in Ce-doped LiNbO3and KNbO3 crystals,” Ferroelectrics 92, 281–287 (1989).
[CrossRef]

C. Medrano, E. Voit, P. Amrhein, P. Günter, “Optimization of the photorefractive properties of KNbO3crystals,” J. Appl. Phys. 64, 4668–4673 (1988).
[CrossRef]

P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

P. Günter, “Coherent light amplification and optical phase conjugation in photoconductive electro-optic materials,” Ferroelectrics 40, 43–47 (1982).
[CrossRef]

P. Günter, A. Krumins, “High-sensitivity read-write volume holographic storage in reduced KNbO3crystals,” Appl. Phys. 23, 199–207 (1980).
[CrossRef]

A. E. Krumins, P. Günter, “Photovoltaic effect and photoconductivity in reduced potassium niobate crystals,” Phys. Status Solidi A 55, K185–K189 (1979).
[CrossRef]

P. Günter, F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27–38 (1978).
[CrossRef]

P. Günter, “Electro-optical properties of KNbO3,” Opt. Commun. 11, 285–290 (1974).
[CrossRef]

Herriau, J. P.

A. Delboulbe, C. Fromont, J. P. Herriau, S. Mallick, J. P. Huignard, “Quasi-nondestructive readout of holographically stored information in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 55, 713–715 (1989).
[CrossRef]

J. P. Herriau, J. P. Huignard, “Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
[CrossRef]

Hesse, H.

A. Förster, H. Hesse, S. Kapphan, M. Wöhlecke, “OH stretching vibrations in monodomain KNbO3,” Solid State Commun. 57, 373–375 (1986).
[CrossRef]

Hesselink, L.

Huignard, J. P.

A. Delboulbe, C. Fromont, J. P. Herriau, S. Mallick, J. P. Huignard, “Quasi-nondestructive readout of holographically stored information in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 55, 713–715 (1989).
[CrossRef]

J. P. Herriau, J. P. Huignard, “Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
[CrossRef]

Ingold, M.

G. Montemezzani, M. Ingold, H. Looser, P. Günter, “Multiple photorefractive gratings in Ce-doped LiNbO3and KNbO3 crystals,” Ferroelectrics 92, 281–287 (1989).
[CrossRef]

Kapphan, S.

A. Förster, H. Hesse, S. Kapphan, M. Wöhlecke, “OH stretching vibrations in monodomain KNbO3,” Solid State Commun. 57, 373–375 (1986).
[CrossRef]

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Kestigian, M.

Klein, M. B.

Krätzig, E.

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

E. Krätzig, “Photorefractive effects and photoconductivity in LiNbO3:Fe,” Ferroelectrics 21, 635–636 (1978).
[CrossRef]

R. Orlowski, E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

Krumins, A.

P. Günter, A. Krumins, “High-sensitivity read-write volume holographic storage in reduced KNbO3crystals,” Appl. Phys. 23, 199–207 (1980).
[CrossRef]

Krumins, A. E.

A. E. Krumins, P. Günter, “Photovoltaic effect and photoconductivity in reduced potassium niobate crystals,” Phys. Status Solidi A 55, K185–K189 (1979).
[CrossRef]

Kuz’minov, Yu. S.

E. I. Bondarenko, V. A. Zagoruiko, Yu. S. Kuz’minov, A. N. Pavlov, E. M. Panchenko, O. I. Prokopalo, “Model of the electret state in oxygen-octahedral materials,” Sov. Phys. Solid State 27, 629–630 (1985).

Looser, H.

G. Montemezzani, M. Ingold, H. Looser, P. Günter, “Multiple photorefractive gratings in Ce-doped LiNbO3and KNbO3 crystals,” Ferroelectrics 92, 281–287 (1989).
[CrossRef]

Wu Xing, H. Looser, H. Wüest, H. Arena, “Progress in KNbO3 crystal growth,” J. Cryst. Growth 78, 431–437 (1986).
[CrossRef]

Mallick, S.

A. Delboulbe, C. Fromont, J. P. Herriau, S. Mallick, J. P. Huignard, “Quasi-nondestructive readout of holographically stored information in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 55, 713–715 (1989).
[CrossRef]

Matull, R.

R. Matull, R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
[CrossRef]

McCahon, S. W.

Medrano, C.

C. Medrano, E. Voit, P. Amrhein, P. Günter, “Optimization of the photorefractive properties of KNbO3crystals,” J. Appl. Phys. 64, 4668–4673 (1988).
[CrossRef]

Micheron, F.

P. Günter, F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27–38 (1978).
[CrossRef]

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Miteva, M.

M. Miteva, L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun. 67, 192–194 (1988).
[CrossRef]

Montemezzani, G.

G. Montemezzani, M. Ingold, H. Looser, P. Günter, “Multiple photorefractive gratings in Ce-doped LiNbO3and KNbO3 crystals,” Ferroelectrics 92, 281–287 (1989).
[CrossRef]

Nikolova, L.

M. Miteva, L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun. 67, 192–194 (1988).
[CrossRef]

Orlowski, R.

R. Orlowski, E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

Panchenko, E. M.

E. M. Panchenko, O. I. Prokopalo, A. E. Panich, V. A. Zagoruiko, Yu. A. Trusov, “Electret state in oxides of the perovskite family,” J. Phys. D 22, 1372–1374 (1989).
[CrossRef]

E. I. Bondarenko, V. A. Zagoruiko, Yu. S. Kuz’minov, A. N. Pavlov, E. M. Panchenko, O. I. Prokopalo, “Model of the electret state in oxygen-octahedral materials,” Sov. Phys. Solid State 27, 629–630 (1985).

Panich, A. E.

E. M. Panchenko, O. I. Prokopalo, A. E. Panich, V. A. Zagoruiko, Yu. A. Trusov, “Electret state in oxides of the perovskite family,” J. Phys. D 22, 1372–1374 (1989).
[CrossRef]

Pavlov, A. N.

E. I. Bondarenko, V. A. Zagoruiko, Yu. S. Kuz’minov, A. N. Pavlov, E. M. Panchenko, O. I. Prokopalo, “Model of the electret state in oxygen-octahedral materials,” Sov. Phys. Solid State 27, 629–630 (1985).

Prokopalo, O. I.

E. M. Panchenko, O. I. Prokopalo, A. E. Panich, V. A. Zagoruiko, Yu. A. Trusov, “Electret state in oxides of the perovskite family,” J. Phys. D 22, 1372–1374 (1989).
[CrossRef]

E. I. Bondarenko, V. A. Zagoruiko, Yu. S. Kuz’minov, A. N. Pavlov, E. M. Panchenko, O. I. Prokopalo, “Model of the electret state in oxygen-octahedral materials,” Sov. Phys. Solid State 27, 629–630 (1985).

Redfield, S.

Rogers, K. F.

D. von der Linde, A. M. Glass, K. F. Rogers,, “High-sensitivity optical recording in KTN by two photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rogers,, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Rupp, R. A.

R. Matull, R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
[CrossRef]

Rytz, D.

Staebler, D. L.

J. J. Amoedi, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

J. Blanc, D. L. Staebler, “Electrocoloration in SrTiO3: vacancy drift and oxidation-reduction of transition metals,” Phys. Rev. B 4, 3548–3557 (1971).
[CrossRef]

D. L. Staebler, “Ferroelectric crystals,” in Holographic Recording Materials, H. M. Smith, ed. (Springer-Verlag, Berlin, 1977), pp. 101–132.
[CrossRef]

Stepanov, S. I.

G. S. Trofimov, S. I. Stepanov, “Electrical development of a hologram in a Bi12SiO20crystal,” Sov. Tech. Phys. Lett. 10, 282–283 (1984).

Thaxter, J. B.

Trofimov, G. S.

G. S. Trofimov, S. I. Stepanov, “Electrical development of a hologram in a Bi12SiO20crystal,” Sov. Tech. Phys. Lett. 10, 282–283 (1984).

Trusov, Yu. A.

E. M. Panchenko, O. I. Prokopalo, A. E. Panich, V. A. Zagoruiko, Yu. A. Trusov, “Electret state in oxides of the perovskite family,” J. Phys. D 22, 1372–1374 (1989).
[CrossRef]

Valley, G. C.

Voit, E.

C. Medrano, E. Voit, P. Amrhein, P. Günter, “Optimization of the photorefractive properties of KNbO3crystals,” J. Appl. Phys. 64, 4668–4673 (1988).
[CrossRef]

E. Voit, “Photorefractive properties and applications of KNbO3crystals,” Ph.D. dissertation ETH Nr. 8555 (Swiss Federal Institute of Technology, Zürich, 1988).

von der Linde, D.

D. von der Linde, A. M. Glass, K. F. Rogers,, “High-sensitivity optical recording in KTN by two photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rogers,, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Vormann, H.

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Weber, G.

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Wechsler, B. A.

Wöhlecke, M.

A. Förster, H. Hesse, S. Kapphan, M. Wöhlecke, “OH stretching vibrations in monodomain KNbO3,” Solid State Commun. 57, 373–375 (1986).
[CrossRef]

Wüest, H.

Wu Xing, H. Looser, H. Wüest, H. Arena, “Progress in KNbO3 crystal growth,” J. Cryst. Growth 78, 431–437 (1986).
[CrossRef]

Xing, Wu

Wu Xing, H. Looser, H. Wüest, H. Arena, “Progress in KNbO3 crystal growth,” J. Cryst. Growth 78, 431–437 (1986).
[CrossRef]

Zagoruiko, V. A.

E. M. Panchenko, O. I. Prokopalo, A. E. Panich, V. A. Zagoruiko, Yu. A. Trusov, “Electret state in oxides of the perovskite family,” J. Phys. D 22, 1372–1374 (1989).
[CrossRef]

E. I. Bondarenko, V. A. Zagoruiko, Yu. S. Kuz’minov, A. N. Pavlov, E. M. Panchenko, O. I. Prokopalo, “Model of the electret state in oxygen-octahedral materials,” Sov. Phys. Solid State 27, 629–630 (1985).

Appl. Opt. (2)

Appl. Phys. (1)

P. Günter, A. Krumins, “High-sensitivity read-write volume holographic storage in reduced KNbO3crystals,” Appl. Phys. 23, 199–207 (1980).
[CrossRef]

Appl. Phys. Lett. (6)

J. J. Amoedi, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rogers,, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rogers,, “High-sensitivity optical recording in KTN by two photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

J. P. Herriau, J. P. Huignard, “Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986).
[CrossRef]

A. Delboulbe, C. Fromont, J. P. Herriau, S. Mallick, J. P. Huignard, “Quasi-nondestructive readout of holographically stored information in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 55, 713–715 (1989).
[CrossRef]

Ferroelectrics (4)

G. Montemezzani, M. Ingold, H. Looser, P. Günter, “Multiple photorefractive gratings in Ce-doped LiNbO3and KNbO3 crystals,” Ferroelectrics 92, 281–287 (1989).
[CrossRef]

E. Krätzig, “Photorefractive effects and photoconductivity in LiNbO3:Fe,” Ferroelectrics 21, 635–636 (1978).
[CrossRef]

P. Günter, F. Micheron, “Photorefractive effects and photocurrents in KNbO3:Fe,” Ferroelectrics 18, 27–38 (1978).
[CrossRef]

P. Günter, “Coherent light amplification and optical phase conjugation in photoconductive electro-optic materials,” Ferroelectrics 40, 43–47 (1982).
[CrossRef]

J. Appl. Phys. (3)

C. Medrano, E. Voit, P. Amrhein, P. Günter, “Optimization of the photorefractive properties of KNbO3crystals,” J. Appl. Phys. 64, 4668–4673 (1988).
[CrossRef]

L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
[CrossRef]

G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials,” J. Appl. Phys. 59, 3363–3366 (1986).
[CrossRef]

J. Cryst. Growth (1)

Wu Xing, H. Looser, H. Wüest, H. Arena, “Progress in KNbO3 crystal growth,” J. Cryst. Growth 78, 431–437 (1986).
[CrossRef]

J. Phys. D (2)

R. Matull, R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
[CrossRef]

E. M. Panchenko, O. I. Prokopalo, A. E. Panich, V. A. Zagoruiko, Yu. A. Trusov, “Electret state in oxides of the perovskite family,” J. Phys. D 22, 1372–1374 (1989).
[CrossRef]

Opt. Commun. (2)

P. Günter, “Electro-optical properties of KNbO3,” Opt. Commun. 11, 285–290 (1974).
[CrossRef]

M. Miteva, L. Nikolova, “Oscillating behavior of diffracted light on uniform illumination of holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun. 67, 192–194 (1988).
[CrossRef]

Opt. Lett. (1)

Phys. Rep. (1)

P. Günter, “Holography, coherent light amplification and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

Phys. Rev. B (1)

J. Blanc, D. L. Staebler, “Electrocoloration in SrTiO3: vacancy drift and oxidation-reduction of transition metals,” Phys. Rev. B 4, 3548–3557 (1971).
[CrossRef]

Phys. Status Solidi A (1)

A. E. Krumins, P. Günter, “Photovoltaic effect and photoconductivity in reduced potassium niobate crystals,” Phys. Status Solidi A 55, K185–K189 (1979).
[CrossRef]

Solid State Commun. (3)

R. Orlowski, E. Krätzig, “Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978).
[CrossRef]

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

A. Förster, H. Hesse, S. Kapphan, M. Wöhlecke, “OH stretching vibrations in monodomain KNbO3,” Solid State Commun. 57, 373–375 (1986).
[CrossRef]

Sov. Phys. Solid State (1)

E. I. Bondarenko, V. A. Zagoruiko, Yu. S. Kuz’minov, A. N. Pavlov, E. M. Panchenko, O. I. Prokopalo, “Model of the electret state in oxygen-octahedral materials,” Sov. Phys. Solid State 27, 629–630 (1985).

Sov. Tech. Phys. Lett. (1)

G. S. Trofimov, S. I. Stepanov, “Electrical development of a hologram in a Bi12SiO20crystal,” Sov. Tech. Phys. Lett. 10, 282–283 (1984).

Other (2)

E. Voit, “Photorefractive properties and applications of KNbO3crystals,” Ph.D. dissertation ETH Nr. 8555 (Swiss Federal Institute of Technology, Zürich, 1988).

D. L. Staebler, “Ferroelectric crystals,” in Holographic Recording Materials, H. M. Smith, ed. (Springer-Verlag, Berlin, 1977), pp. 101–132.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup used for the holographic experiments. BS, beam splitter; M, mirrors: S1, S2, shutters; PMT, photomultiplier.

Fig. 2
Fig. 2

Holographic recording and dark erasure cycle of pure KNbO3 at room temperature. Recording intensity 25 mW/cm2.

Fig. 3
Fig. 3

Time dependence of the diffraction efficiency during recording (t < 500 sec) and decay in the dark (t > 550 sec) in KNbO3:LiNaFe at T = 95°C. A, The photoinduced space-charge field is generated. B, Secondary charge carriers compensate the primary grating. C, The photoinduced field disappears. D, The secondary grating decays thermally. The same dynamics is observed in pure KNbO3 and in Fe-doped KNbO3 as well.

Fig. 4
Fig. 4

Simultaneous measurement of diffraction efficiency η (left-hand scales) and effective gain γ0 (right-hand scales) during (a) recording and (b) subsequent decay in the dark in pure KNbO3 (T = 94°C).

Fig. 5
Fig. 5

Attempt to erase a secondary grating during phase D in the KNbO3:LiNaFe sample. Temperature = 102°C. Between t = 290 sec and t = 345 sec only the weak He–Ne probing beam illuminates the crystal. At t = 345 sec an erasing beam (λ = 514.5 nm) with intensity I = 0.25 W/cm2 is switched on.

Fig. 6
Fig. 6

Time constant τ [Eq. (3)] as a function of the inverse temperature. ●, KNbO3:LiNaFe; ■, KNbO3:pure; *, KNbO3:Fe. The activation energies ΔE are obtained from the linear fits, following Eq. (8). ΔE = 0.98 eV for KNbO3:LiNaFe, ΔE = 1.04 eV for KNbO3:pure, and ΔE = 0.81 eV for KNbO3:Fe.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

γ 0 = I A ( L ) with pump I A ( L ) without pump exp ( Γ L ) ,
σ ph = n e e μ e + n h e μ h = g e τ e e μ e + g h τ h e μ h ,
Δ n ( t ) = Δ n 0 exp ( t / τ ) ,
N ( x ) = N 0 + N 1 cos ( K x ) ,
E sc ( x ) = e N 1 ε ε o K sin ( K x ) ,
J = e μ s N E sc μ s k B T ( N / x ) .
N 1 t = e μ s N 0 ε ε 0 N 1 μ s k B T K 2 e N 1 ,
τ ( T ) = τ 0 exp ( Δ E / k B T ) .

Metrics