Abstract

We measure and analyze beam-coupling gain and response time in BaTiO3 crystals doped with cobalt at levels of 50 and 100 parts in 106 for various oxidation and reduction states. We discuss the effect of cobalt doping and oxidation–reduction on the electron paramagnetic resonance and optical absorption of BaTiO3. We compare the BaTiO3:Co samples with nominally undoped and transition-metal- (chromium, manganese, iron, and iron + nickel) doped BaTiO3. We conclude that cobalt-doped BaTiO3 in the as-grown state displays high photorefractive gain that is correlated with the cobalt concentration in a reproducible manner. Cobalt appears to be the most promising transition-metal dopant for BaTiO3 investigated so far.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications I and II, Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988, 1989).
    [Crossref]
  2. S. Ducharme and J. Feinberg, J. Opt. Soc. Am. B 3, 283 (1986).
    [Crossref]
  3. B. A. Wechsler, M. B. Klein, and D. Rytz, Proc. Soc. Photo-Opt. Instrum. Eng. 681, 91 (1987).
  4. M. B. Klein and R. N. Schwartz, J. Opt. Soc. Am. B 3, 293 (1986).
    [Crossref]
  5. B. A. Wechsler and M. B. Klein, J. Opt. Soc. Am. B 5, 1711 (1988).
    [Crossref]
  6. R. S. Hathcock, D. A. Temple, and C. Warde, IEEE J. Quantum Electron. QE-23, 2122 (1987).
    [Crossref]
  7. G. Ormancey, P. Jullien, W. Ousi Benomar, Y. Semanou, P. Lompre, Y. Beaucamps, and G. Godefroy, Jpn. J. Appl. Phys. Suppl. 24-2, 293 (1985).
  8. P. G. Schunemann, D. A. Temple, R. S. Hathcock, H. L. Tuller, H. P. Jenssen, D. R. Gabbe, and C. Warde, J. Opt. Soc. Am. B 5, 1685 (1988).
    [Crossref]
  9. V. Belruss, J. Kalnajs, A. Linz, and R. C. Folweiler, Mater. Res. Bull. 6, 899 (1971).
    [Crossref]
  10. D. Rytz, B. A. Wechsler, C. C. Nelson, and K. W. Kirby, J. Cryst. Growth 99, 864 (1990).
    [Crossref]
  11. H. E. Müser, W. Kuhn, and J. Albers, Phys. Status Solidi A 49, 51 (1978); J. Albers, Universität des Saarlandes, Saarbrucken, Germany (personal communication, 1987).
    [Crossref]
  12. F. M. Michel-Calendini, P. Moretti, and G. Godefroy, Ferroelectron. Lett. 44, 257 (1983).
    [Crossref]
  13. K. Žďánský, H. Arend, and F. Kubec, Phys. Status Solidi 20, 653 (1967).
    [Crossref]
  14. M. Aguilar, Solid State Commun. 50, 837 (1984).
    [Crossref]
  15. E. Possenriede, O. F. Schirmer, J. Albers, and G. Godefroy, presented at the Seventh International Meeting on Ferroelectricity, Saarbrücken, 1989.
  16. K. W. Blazey and K. A. Müller, J. Phys. C 16, 5491 (1983).
    [Crossref]
  17. S. H. Wemple, Phys. Rev. B 2, 2679 (1970).
    [Crossref]
  18. S. H. Wemple, M. DiDomenico, and I. Camlibel, J. Phys. Chem. Solids 29, 1797 (1968).
    [Crossref]
  19. C. N. Berglund and H. J. Braun, Phys. Rev. 164, 790 (1967).
    [Crossref]
  20. F. M. Michel-Calendini and P. Moretti, Phys. Rev. B 27, 763 (1983).
    [Crossref]
  21. In as-grown samples of BaTiO3:Co we observe a strong time dependence of the Co2+ (HS) EPR signal. After cooling to 18 K, it grows from almost zero to its final intensity over a period of ~10 min. In a correlated way, the EPR signal of Fe3+ (HS) decreases. This effect is not observed in reduced samples.
  22. J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
    [Crossref]
  23. M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1985); J. Appl. Phys. 58, 2798 (1985).
    [Crossref]
  24. S. Ducharme, “Photorefraction in BaTiO3,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1986).
  25. G. C. Valley, J. Appl. Phys. 59, 3363 (1986).
    [Crossref]
  26. F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, Opt. Lett. 11, 312 (1986).
    [Crossref]
  27. S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
    [Crossref]
  28. G. A. Brost, R. A. Motes, and J. R. Rotge, J. Opt. Soc. Am. B 5, 1879 (1988).
    [Crossref]
  29. D. Rytz, M. B. Klein, R. A. Mullen, R. N. Schwartz, G. C. Valley, and B. A. Wechsler, Appl. Phys. Lett. 52, 1759 (1988).
    [Crossref]
  30. J. Feinberg, Opt. Lett. 7, 486 (1982).
    [Crossref] [PubMed]
  31. T. Y. Chang and R. W. Hellwarth, Opt. Lett. 10, 408 (1985).
    [Crossref] [PubMed]
  32. M. D. Ewbank, Opt. Lett. 13, 47 (1988).
    [Crossref] [PubMed]

1990 (1)

D. Rytz, B. A. Wechsler, C. C. Nelson, and K. W. Kirby, J. Cryst. Growth 99, 864 (1990).
[Crossref]

1988 (5)

1987 (3)

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[Crossref]

R. S. Hathcock, D. A. Temple, and C. Warde, IEEE J. Quantum Electron. QE-23, 2122 (1987).
[Crossref]

B. A. Wechsler, M. B. Klein, and D. Rytz, Proc. Soc. Photo-Opt. Instrum. Eng. 681, 91 (1987).

1986 (4)

1985 (3)

M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1985); J. Appl. Phys. 58, 2798 (1985).
[Crossref]

T. Y. Chang and R. W. Hellwarth, Opt. Lett. 10, 408 (1985).
[Crossref] [PubMed]

G. Ormancey, P. Jullien, W. Ousi Benomar, Y. Semanou, P. Lompre, Y. Beaucamps, and G. Godefroy, Jpn. J. Appl. Phys. Suppl. 24-2, 293 (1985).

1984 (1)

M. Aguilar, Solid State Commun. 50, 837 (1984).
[Crossref]

1983 (3)

K. W. Blazey and K. A. Müller, J. Phys. C 16, 5491 (1983).
[Crossref]

F. M. Michel-Calendini, P. Moretti, and G. Godefroy, Ferroelectron. Lett. 44, 257 (1983).
[Crossref]

F. M. Michel-Calendini and P. Moretti, Phys. Rev. B 27, 763 (1983).
[Crossref]

1982 (1)

1980 (1)

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[Crossref]

1978 (1)

H. E. Müser, W. Kuhn, and J. Albers, Phys. Status Solidi A 49, 51 (1978); J. Albers, Universität des Saarlandes, Saarbrucken, Germany (personal communication, 1987).
[Crossref]

1971 (1)

V. Belruss, J. Kalnajs, A. Linz, and R. C. Folweiler, Mater. Res. Bull. 6, 899 (1971).
[Crossref]

1970 (1)

S. H. Wemple, Phys. Rev. B 2, 2679 (1970).
[Crossref]

1968 (1)

S. H. Wemple, M. DiDomenico, and I. Camlibel, J. Phys. Chem. Solids 29, 1797 (1968).
[Crossref]

1967 (2)

C. N. Berglund and H. J. Braun, Phys. Rev. 164, 790 (1967).
[Crossref]

K. Žďánský, H. Arend, and F. Kubec, Phys. Status Solidi 20, 653 (1967).
[Crossref]

Aguilar, M.

M. Aguilar, Solid State Commun. 50, 837 (1984).
[Crossref]

Albers, J.

H. E. Müser, W. Kuhn, and J. Albers, Phys. Status Solidi A 49, 51 (1978); J. Albers, Universität des Saarlandes, Saarbrucken, Germany (personal communication, 1987).
[Crossref]

E. Possenriede, O. F. Schirmer, J. Albers, and G. Godefroy, presented at the Seventh International Meeting on Ferroelectricity, Saarbrücken, 1989.

Arend, H.

K. Žďánský, H. Arend, and F. Kubec, Phys. Status Solidi 20, 653 (1967).
[Crossref]

Beaucamps, Y.

G. Ormancey, P. Jullien, W. Ousi Benomar, Y. Semanou, P. Lompre, Y. Beaucamps, and G. Godefroy, Jpn. J. Appl. Phys. Suppl. 24-2, 293 (1985).

Belruss, V.

V. Belruss, J. Kalnajs, A. Linz, and R. C. Folweiler, Mater. Res. Bull. 6, 899 (1971).
[Crossref]

Berglund, C. N.

C. N. Berglund and H. J. Braun, Phys. Rev. 164, 790 (1967).
[Crossref]

Blazey, K. W.

K. W. Blazey and K. A. Müller, J. Phys. C 16, 5491 (1983).
[Crossref]

Braun, H. J.

C. N. Berglund and H. J. Braun, Phys. Rev. 164, 790 (1967).
[Crossref]

Brost, G. A.

Camlibel, I.

S. H. Wemple, M. DiDomenico, and I. Camlibel, J. Phys. Chem. Solids 29, 1797 (1968).
[Crossref]

Chang, T. Y.

DiDomenico, M.

S. H. Wemple, M. DiDomenico, and I. Camlibel, J. Phys. Chem. Solids 29, 1797 (1968).
[Crossref]

Ducharme, S.

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[Crossref]

S. Ducharme and J. Feinberg, J. Opt. Soc. Am. B 3, 283 (1986).
[Crossref]

S. Ducharme, “Photorefraction in BaTiO3,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1986).

Ewbank, M. D.

Feinberg, J.

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[Crossref]

S. Ducharme and J. Feinberg, J. Opt. Soc. Am. B 3, 283 (1986).
[Crossref]

J. Feinberg, Opt. Lett. 7, 486 (1982).
[Crossref] [PubMed]

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[Crossref]

Folweiler, R. C.

V. Belruss, J. Kalnajs, A. Linz, and R. C. Folweiler, Mater. Res. Bull. 6, 899 (1971).
[Crossref]

Gabbe, D. R.

Godefroy, G.

G. Ormancey, P. Jullien, W. Ousi Benomar, Y. Semanou, P. Lompre, Y. Beaucamps, and G. Godefroy, Jpn. J. Appl. Phys. Suppl. 24-2, 293 (1985).

F. M. Michel-Calendini, P. Moretti, and G. Godefroy, Ferroelectron. Lett. 44, 257 (1983).
[Crossref]

E. Possenriede, O. F. Schirmer, J. Albers, and G. Godefroy, presented at the Seventh International Meeting on Ferroelectricity, Saarbrücken, 1989.

Hathcock, R. S.

Heiman, D.

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[Crossref]

Hellwarth, R. W.

Jenssen, H. P.

Jonathan, J. M. C.

Jullien, P.

G. Ormancey, P. Jullien, W. Ousi Benomar, Y. Semanou, P. Lompre, Y. Beaucamps, and G. Godefroy, Jpn. J. Appl. Phys. Suppl. 24-2, 293 (1985).

Kalnajs, J.

V. Belruss, J. Kalnajs, A. Linz, and R. C. Folweiler, Mater. Res. Bull. 6, 899 (1971).
[Crossref]

Kirby, K. W.

D. Rytz, B. A. Wechsler, C. C. Nelson, and K. W. Kirby, J. Cryst. Growth 99, 864 (1990).
[Crossref]

Klein, M. B.

B. A. Wechsler and M. B. Klein, J. Opt. Soc. Am. B 5, 1711 (1988).
[Crossref]

D. Rytz, M. B. Klein, R. A. Mullen, R. N. Schwartz, G. C. Valley, and B. A. Wechsler, Appl. Phys. Lett. 52, 1759 (1988).
[Crossref]

B. A. Wechsler, M. B. Klein, and D. Rytz, Proc. Soc. Photo-Opt. Instrum. Eng. 681, 91 (1987).

M. B. Klein and R. N. Schwartz, J. Opt. Soc. Am. B 3, 293 (1986).
[Crossref]

M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1985); J. Appl. Phys. 58, 2798 (1985).
[Crossref]

Kubec, F.

K. Žďánský, H. Arend, and F. Kubec, Phys. Status Solidi 20, 653 (1967).
[Crossref]

Kuhn, W.

H. E. Müser, W. Kuhn, and J. Albers, Phys. Status Solidi A 49, 51 (1978); J. Albers, Universität des Saarlandes, Saarbrucken, Germany (personal communication, 1987).
[Crossref]

Linz, A.

V. Belruss, J. Kalnajs, A. Linz, and R. C. Folweiler, Mater. Res. Bull. 6, 899 (1971).
[Crossref]

Lompre, P.

G. Ormancey, P. Jullien, W. Ousi Benomar, Y. Semanou, P. Lompre, Y. Beaucamps, and G. Godefroy, Jpn. J. Appl. Phys. Suppl. 24-2, 293 (1985).

Michel-Calendini, F. M.

F. M. Michel-Calendini, P. Moretti, and G. Godefroy, Ferroelectron. Lett. 44, 257 (1983).
[Crossref]

F. M. Michel-Calendini and P. Moretti, Phys. Rev. B 27, 763 (1983).
[Crossref]

Moretti, P.

F. M. Michel-Calendini and P. Moretti, Phys. Rev. B 27, 763 (1983).
[Crossref]

F. M. Michel-Calendini, P. Moretti, and G. Godefroy, Ferroelectron. Lett. 44, 257 (1983).
[Crossref]

Motes, R. A.

Mullen, R. A.

D. Rytz, M. B. Klein, R. A. Mullen, R. N. Schwartz, G. C. Valley, and B. A. Wechsler, Appl. Phys. Lett. 52, 1759 (1988).
[Crossref]

Müller, K. A.

K. W. Blazey and K. A. Müller, J. Phys. C 16, 5491 (1983).
[Crossref]

Müser, H. E.

H. E. Müser, W. Kuhn, and J. Albers, Phys. Status Solidi A 49, 51 (1978); J. Albers, Universität des Saarlandes, Saarbrucken, Germany (personal communication, 1987).
[Crossref]

Nelson, C. C.

D. Rytz, B. A. Wechsler, C. C. Nelson, and K. W. Kirby, J. Cryst. Growth 99, 864 (1990).
[Crossref]

Neurgaonkar, R. R.

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[Crossref]

Ormancey, G.

G. Ormancey, P. Jullien, W. Ousi Benomar, Y. Semanou, P. Lompre, Y. Beaucamps, and G. Godefroy, Jpn. J. Appl. Phys. Suppl. 24-2, 293 (1985).

Ousi Benomar, W.

G. Ormancey, P. Jullien, W. Ousi Benomar, Y. Semanou, P. Lompre, Y. Beaucamps, and G. Godefroy, Jpn. J. Appl. Phys. Suppl. 24-2, 293 (1985).

Possenriede, E.

E. Possenriede, O. F. Schirmer, J. Albers, and G. Godefroy, presented at the Seventh International Meeting on Ferroelectricity, Saarbrücken, 1989.

Rotge, J. R.

Rytz, D.

D. Rytz, B. A. Wechsler, C. C. Nelson, and K. W. Kirby, J. Cryst. Growth 99, 864 (1990).
[Crossref]

D. Rytz, M. B. Klein, R. A. Mullen, R. N. Schwartz, G. C. Valley, and B. A. Wechsler, Appl. Phys. Lett. 52, 1759 (1988).
[Crossref]

B. A. Wechsler, M. B. Klein, and D. Rytz, Proc. Soc. Photo-Opt. Instrum. Eng. 681, 91 (1987).

Schirmer, O. F.

E. Possenriede, O. F. Schirmer, J. Albers, and G. Godefroy, presented at the Seventh International Meeting on Ferroelectricity, Saarbrücken, 1989.

Schunemann, P. G.

Schwartz, R. N.

D. Rytz, M. B. Klein, R. A. Mullen, R. N. Schwartz, G. C. Valley, and B. A. Wechsler, Appl. Phys. Lett. 52, 1759 (1988).
[Crossref]

M. B. Klein and R. N. Schwartz, J. Opt. Soc. Am. B 3, 293 (1986).
[Crossref]

Semanou, Y.

G. Ormancey, P. Jullien, W. Ousi Benomar, Y. Semanou, P. Lompre, Y. Beaucamps, and G. Godefroy, Jpn. J. Appl. Phys. Suppl. 24-2, 293 (1985).

Strohkendl, F. P.

Tanguay, A. R.

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[Crossref]

Temple, D. A.

Tuller, H. L.

Valley, G. C.

D. Rytz, M. B. Klein, R. A. Mullen, R. N. Schwartz, G. C. Valley, and B. A. Wechsler, Appl. Phys. Lett. 52, 1759 (1988).
[Crossref]

G. C. Valley, J. Appl. Phys. 59, 3363 (1986).
[Crossref]

M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1985); J. Appl. Phys. 58, 2798 (1985).
[Crossref]

Warde, C.

Wechsler, B. A.

D. Rytz, B. A. Wechsler, C. C. Nelson, and K. W. Kirby, J. Cryst. Growth 99, 864 (1990).
[Crossref]

B. A. Wechsler and M. B. Klein, J. Opt. Soc. Am. B 5, 1711 (1988).
[Crossref]

D. Rytz, M. B. Klein, R. A. Mullen, R. N. Schwartz, G. C. Valley, and B. A. Wechsler, Appl. Phys. Lett. 52, 1759 (1988).
[Crossref]

B. A. Wechsler, M. B. Klein, and D. Rytz, Proc. Soc. Photo-Opt. Instrum. Eng. 681, 91 (1987).

Wemple, S. H.

S. H. Wemple, Phys. Rev. B 2, 2679 (1970).
[Crossref]

S. H. Wemple, M. DiDomenico, and I. Camlibel, J. Phys. Chem. Solids 29, 1797 (1968).
[Crossref]

Ždánský, K.

K. Žďánský, H. Arend, and F. Kubec, Phys. Status Solidi 20, 653 (1967).
[Crossref]

Appl. Phys. Lett. (1)

D. Rytz, M. B. Klein, R. A. Mullen, R. N. Schwartz, G. C. Valley, and B. A. Wechsler, Appl. Phys. Lett. 52, 1759 (1988).
[Crossref]

Ferroelectron. Lett. (1)

F. M. Michel-Calendini, P. Moretti, and G. Godefroy, Ferroelectron. Lett. 44, 257 (1983).
[Crossref]

IEEE J. Quantum Electron. (2)

R. S. Hathcock, D. A. Temple, and C. Warde, IEEE J. Quantum Electron. QE-23, 2122 (1987).
[Crossref]

S. Ducharme, J. Feinberg, and R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[Crossref]

J. Appl. Phys. (3)

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[Crossref]

M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1985); J. Appl. Phys. 58, 2798 (1985).
[Crossref]

G. C. Valley, J. Appl. Phys. 59, 3363 (1986).
[Crossref]

J. Cryst. Growth (1)

D. Rytz, B. A. Wechsler, C. C. Nelson, and K. W. Kirby, J. Cryst. Growth 99, 864 (1990).
[Crossref]

J. Opt. Soc. Am. B (5)

J. Phys. C (1)

K. W. Blazey and K. A. Müller, J. Phys. C 16, 5491 (1983).
[Crossref]

J. Phys. Chem. Solids (1)

S. H. Wemple, M. DiDomenico, and I. Camlibel, J. Phys. Chem. Solids 29, 1797 (1968).
[Crossref]

Jpn. J. Appl. Phys. Suppl. (1)

G. Ormancey, P. Jullien, W. Ousi Benomar, Y. Semanou, P. Lompre, Y. Beaucamps, and G. Godefroy, Jpn. J. Appl. Phys. Suppl. 24-2, 293 (1985).

Mater. Res. Bull. (1)

V. Belruss, J. Kalnajs, A. Linz, and R. C. Folweiler, Mater. Res. Bull. 6, 899 (1971).
[Crossref]

Opt. Lett. (4)

Phys. Rev. (1)

C. N. Berglund and H. J. Braun, Phys. Rev. 164, 790 (1967).
[Crossref]

Phys. Rev. B (2)

F. M. Michel-Calendini and P. Moretti, Phys. Rev. B 27, 763 (1983).
[Crossref]

S. H. Wemple, Phys. Rev. B 2, 2679 (1970).
[Crossref]

Phys. Status Solidi (1)

K. Žďánský, H. Arend, and F. Kubec, Phys. Status Solidi 20, 653 (1967).
[Crossref]

Phys. Status Solidi A (1)

H. E. Müser, W. Kuhn, and J. Albers, Phys. Status Solidi A 49, 51 (1978); J. Albers, Universität des Saarlandes, Saarbrucken, Germany (personal communication, 1987).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

B. A. Wechsler, M. B. Klein, and D. Rytz, Proc. Soc. Photo-Opt. Instrum. Eng. 681, 91 (1987).

Solid State Commun. (1)

M. Aguilar, Solid State Commun. 50, 837 (1984).
[Crossref]

Other (4)

E. Possenriede, O. F. Schirmer, J. Albers, and G. Godefroy, presented at the Seventh International Meeting on Ferroelectricity, Saarbrücken, 1989.

In as-grown samples of BaTiO3:Co we observe a strong time dependence of the Co2+ (HS) EPR signal. After cooling to 18 K, it grows from almost zero to its final intensity over a period of ~10 min. In a correlated way, the EPR signal of Fe3+ (HS) decreases. This effect is not observed in reduced samples.

S. Ducharme, “Photorefraction in BaTiO3,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1986).

P. Günter and J.-P. Huignard, eds., Photorefractive Materials and Their Applications I and II, Vols. 61 and 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988, 1989).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Single-domain cobalt-doped BaTiO3 samples with various dopant concentrations and subjected to different oxidation–reduction treatments.

Fig. 2
Fig. 2

X-band EPR spectra of powdered single-crystal BaTiO3:Co recorded at 18 K: (a) center field of 3350 G and field sweep of 5000 G; (b) center field of 1535 G and field sweep of 500 G. Other spectrometer settings: microwave power, 1 mW; field modulation, 2 G; ν = 9.26569 GHz.

Fig. 3
Fig. 3

Spectral dependence of the absorption coefficient (measured with light polarized perpendicular to the c axis) of undoped and cobalt-doped BaTiO3 single-domain crystals.

Fig. 4
Fig. 4

Spectral dependence of the transmission (measured with light polarized perpendicular to the c axis) of as-grown and reduced BaTiO3 single-domain crystals doped with 50 parts in 106 of cobalt. Because the index of refraction of BaTiO3 is unknown for wavelengths longer than 1 μm, we have not attempted to determine the absorption coefficients. Sample thicknesses are as follows: as grown, 3.0 mm; CO2, 2.1 mm; 1% CO, 2.1 mm; 50% CO, 2.3 mm.

Fig. 5
Fig. 5

Beam-coupling gain as a function of grating spacing for undoped and cobalt-doped samples. Experimental conditions: 515 nm, 3 W/cm2, beam ratio of 800. The nominally undoped sample labeled 69 was obtained from Sanders Associates, Merrimack, New Hampshire. All samples were measured in the as-grown state. Solid and dashed curves are theoretical fits described in the text.

Fig. 6
Fig. 6

Beam-coupling gain as a function of grating spacing for samples with 50 parts in 106 of cobalt in various oxidation–reduction states. The experimental conditions were similar to those of the measurements displayed in Fig. 5. Solid and dashed curves are theoretical fits described in the text.

Fig. 7
Fig. 7

Beam-coupling gain as a function of grating spacing for samples with 100 parts in 106 of cobalt in various oxidation–reduction states. The experimental conditions were similar to those of the measurements displayed in Fig. 5. Solid and dashed curves are theoretical fits described in the text.

Fig. 8
Fig. 8

Beam-coupling data shown as the inverse of the product of the gain times the grating spacing as a function of the inverse grating spacing squared for samples of BaTiO3 doped with 50 parts in 106 of cobalt. Solid and dashed curves are theoretical fits described in the text.

Fig. 9
Fig. 9

Summary of beam-coupling gain and response time (from the data in Table 2) for doped and undoped BaTiO3 crystals annealed under various oxidation–reduction conditions. Open circles, as grown; filled circles, reduced in a CO2:CO (99:1) atmosphere; open squares, oxidized in pure O2. The numbers next to the symbols indicate dopant concentration in parts in 106.

Fig. 10
Fig. 10

Intensity dependence of beam-coupling response time for an as-grown BaTiO3 sample doped with 50 parts in 106 of cobalt, measured for two different grating spacings Λg.

Fig. 11
Fig. 11

Time dependence of phase-conjugate reflectivity of two cobalt-doped BaTiO3 crystals from the same boule but processed under different conditions.

Fig. 12
Fig. 12

Concentration versus partial pressure of oxygen for various defects in BaTiO3:Co, according to the thermodynamic model of Ref. 5. V O x , V O ., and V O .. designate oxygen vacancies that are neutral (2e), singly ionized (1e), and doubly ionized, respectively.

Tables (2)

Tables Icon

Table 1 Photorefractive Parameters: Effective Trap Density and Relative Conductivity Factor

Tables Icon

Table 2 Beam-Coupling Gain Coefficient and Response Time for Doped and Undoped BaTiO3 Annealed at 800°Ca

Metrics