Abstract

Programmed size ramping of an aerosol stream permits a Q-switched mode-locked 532-nm laser to satisfy periodically the input resonance condition of various low-order (l = 2 to l = 4) TE and TM morphology-dependent resonances in 23.0–23.7-μm-diameter ethanol droplets. The resulting size-versus-amplitude spectra of stimulated Raman scattered light revealed high-Q modes that are not normally observed in elastic scattering. Simultaneous elastic scattering measurements permit unambiguous identification of these input resonances. The relative output intensities of stimulated Raman scattering and time histories imply that the Q of the l = 2 modes is degraded to a value of 107 by the departure of the droplet from an ideal homogeneous sphere.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Hill and R. E. Benner, “Morphology-dependent resonances associated with stimulated processes in microspheres,” J. Opt. Soc. Am. B 3, 1509–1514 (1986).
    [CrossRef]
  2. J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
    [CrossRef] [PubMed]
  3. S.-X. Qian and R. K. Chang, “Multiorder Stokes emission from micrometer-size droplets,” Phys. Rev. Lett. 56, 926–929 (1986).
    [CrossRef] [PubMed]
  4. R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, and G. Fernandez, “Stimulated Raman scattering in micrometer-sized droplets: measurements of angular scattering characteristics,” Opt. Lett. 13, 1099–1101 (1988).
    [CrossRef] [PubMed]
  5. W.-F. Hsieh, J.-b. Zheng, and R. K. Chang, “Time dependence of multiorder stimulated Raman scattering from single droplets,” Opt. Lett. 13, 497–499 (1988).
    [CrossRef] [PubMed]
  6. R. G. Pinnick, A. Biswas, P. Chýlek, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, M. A. Jarzembski, and G. Fernandez, “Stimulated Raman scattering in micrometer-sized droplets: time-resolved measurements,” Opt. Lett. 13, 494–496 (1988).
    [CrossRef] [PubMed]
  7. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
    [CrossRef] [PubMed]
  8. H.-B. Lin, A. L. Huston, B. L. Justus, and A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614–616 (1986).
    [CrossRef] [PubMed]
  9. J.-Z. Zhang and R. K. Chang, “Generation and suppression of stimulated Brillouin scattering in single liquid droplets,” J. Opt. Soc. Am. B 16, 151–153 (1989).
    [CrossRef]
  10. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  11. J. F. Owen, P. W. Barber, B. J. Messinger, and R. K. Chang, “Determination of optical-fiber diameter from resonances in the elastic scattering spectrum,” Opt. Lett. 6, 272–274 (1981).
    [CrossRef] [PubMed]
  12. R. Thurn and W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985).
    [CrossRef] [PubMed]
  13. A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
    [CrossRef]
  14. R. E. Benner, P. W. Barber, J. E. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
    [CrossRef]
  15. S. C. Hill, R. E. Benner, C. K. Rushforth, and P. R. Conwell, “Structural resonances observed in the fluorescence emission from small spheres on substrates,” Appl. Opt. 23, 1680–1683 (1984).
    [CrossRef] [PubMed]
  16. P. R. Conwell, P. W. Barber, and C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).
    [CrossRef]
  17. J.-Z. Zhang, D. H. Leach, and R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated scattering,” Opt. Lett. 13, 270–272 (1988).
    [CrossRef] [PubMed]
  18. S. Arnold and L. M. Folan, “Energy transfer and the photon lifetime within an aerosol particle,” Opt. Lett. 14, 387–389 (1989).
    [CrossRef] [PubMed]
  19. A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
    [CrossRef] [PubMed]
  20. R. N. Berglund and B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
    [CrossRef]
  21. H-B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
    [CrossRef]
  22. H-B. Lin, J. D. Eversole, and A. J. Campillo, “Identification of morphology-dependent resonances in stimulated Raman scattering from microdroplets,” Opt. Commun. (to be published).
  23. J. D. Eversole, H-B. Lin, A. L. Huston, and A. J. Campillo, “Spherical cavity mode assignments of optical resonances in microdroplets using elastic scattering,” J. Opt. Soc. Am. A (to be published).
  24. W. J. Wiscombe, Mie Scattering Calculations; Advances in Technique and Fast, Vector-Speed Computer Codes, Doc. PB-301388 (National Information Service, Springfield, Va., 1979).
  25. J. M. Schneider and C. D. Hendricks, “Source of uniform-sized liquid droplets,” Rev. Sci. Instrum. 35, 1349–1350 (1964).
    [CrossRef]
  26. N. Bloembergen, “The stimulated Raman effect,” Am. J. Phys. 35, 989–1023 (1967).
    [CrossRef]
  27. W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. Arechi, ed. (North-Holland, Amsterdam, 1972), pp. 1077–1150.
  28. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 141–186.
  29. B. G. Huth, N. V. Karlov, R. H. Pantell, and H. E. Puthoff, “A quantitative study of the stimulated Raman effect using an off-axis resonator,” IEEE J. Quantum Electron. QE-2, 763–769 (1966).
    [CrossRef]
  30. J. Eggleston and R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. 16, 850–853 (1980).
    [CrossRef]
  31. C.-S. Wang, “The stimulated Raman process,” in Quantum Electronics, Vol. 1, Nonlinear Optics, Part A, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 447–472.
  32. S. C. Hill and R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.
  33. D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26, 1348–1356 (1987).
    [CrossRef] [PubMed]
  34. P. Chýlek, J. D. Pendleton, and R. G. Pinnick, “Internal and near-surface scattered field of a spherical particle at resonant conditions,” Appl. Opt. 24, 3940–3942 (1985).
    [CrossRef] [PubMed]
  35. S. M. Chitanvis and C. D. Cantrell, “Simple approach to stimulated Brillouin scattering in glass aerosols,” J. Opt. Soc. Am. B 6, 1326–1331 (1989).
    [CrossRef]
  36. T. Baer, “Continuous-wave laser oscillation in a Nd:YAG sphere,” Opt. Lett. 12, 392–394 (1987).
    [CrossRef] [PubMed]
  37. J. Stone, “Measurements of the absorption of light in low-loss liquids,” J. Opt. Soc. Am. 62, 327–333 (1972).
    [CrossRef]
  38. C. Hu and J. R. Whinnery, “New thermooptical measurement method and a comparison with other methods,” Appl. Opt. 12, 72–79 (1973).
    [CrossRef] [PubMed]
  39. R. L. Swofford, M. E. Long, M. S. Burberry, and A. C. Albrecht, “Free O — H overtone absorption of methanols in the visible region by thermal lensing spectroscopy,” J. Chem. Phys. 66, 664–668 (1977).
    [CrossRef]

1990 (1)

H-B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
[CrossRef]

1989 (4)

S. Arnold and L. M. Folan, “Energy transfer and the photon lifetime within an aerosol particle,” Opt. Lett. 14, 387–389 (1989).
[CrossRef] [PubMed]

A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
[CrossRef] [PubMed]

S. M. Chitanvis and C. D. Cantrell, “Simple approach to stimulated Brillouin scattering in glass aerosols,” J. Opt. Soc. Am. B 6, 1326–1331 (1989).
[CrossRef]

J.-Z. Zhang and R. K. Chang, “Generation and suppression of stimulated Brillouin scattering in single liquid droplets,” J. Opt. Soc. Am. B 16, 151–153 (1989).
[CrossRef]

1988 (4)

1987 (2)

1986 (3)

1985 (3)

1984 (3)

1981 (1)

1980 (2)

R. E. Benner, P. W. Barber, J. E. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

J. Eggleston and R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. 16, 850–853 (1980).
[CrossRef]

1977 (2)

R. L. Swofford, M. E. Long, M. S. Burberry, and A. C. Albrecht, “Free O — H overtone absorption of methanols in the visible region by thermal lensing spectroscopy,” J. Chem. Phys. 66, 664–668 (1977).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

1973 (2)

C. Hu and J. R. Whinnery, “New thermooptical measurement method and a comparison with other methods,” Appl. Opt. 12, 72–79 (1973).
[CrossRef] [PubMed]

R. N. Berglund and B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[CrossRef]

1972 (1)

1967 (1)

N. Bloembergen, “The stimulated Raman effect,” Am. J. Phys. 35, 989–1023 (1967).
[CrossRef]

1966 (1)

B. G. Huth, N. V. Karlov, R. H. Pantell, and H. E. Puthoff, “A quantitative study of the stimulated Raman effect using an off-axis resonator,” IEEE J. Quantum Electron. QE-2, 763–769 (1966).
[CrossRef]

1964 (1)

J. M. Schneider and C. D. Hendricks, “Source of uniform-sized liquid droplets,” Rev. Sci. Instrum. 35, 1349–1350 (1964).
[CrossRef]

Albrecht, A. C.

R. L. Swofford, M. E. Long, M. S. Burberry, and A. C. Albrecht, “Free O — H overtone absorption of methanols in the visible region by thermal lensing spectroscopy,” J. Chem. Phys. 66, 664–668 (1977).
[CrossRef]

Armstrong, R. L.

Arnold, S.

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

Baer, T.

Barber, P. W.

Benincasa, D. S.

Benner, R. E.

S. C. Hill and R. E. Benner, “Morphology-dependent resonances associated with stimulated processes in microspheres,” J. Opt. Soc. Am. B 3, 1509–1514 (1986).
[CrossRef]

S. C. Hill, R. E. Benner, C. K. Rushforth, and P. R. Conwell, “Structural resonances observed in the fluorescence emission from small spheres on substrates,” Appl. Opt. 23, 1680–1683 (1984).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. E. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

S. C. Hill and R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

Berglund, R. N.

R. N. Berglund and B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[CrossRef]

Biswas, A.

Bloembergen, N.

N. Bloembergen, “The stimulated Raman effect,” Am. J. Phys. 35, 989–1023 (1967).
[CrossRef]

Burberry, M. S.

R. L. Swofford, M. E. Long, M. S. Burberry, and A. C. Albrecht, “Free O — H overtone absorption of methanols in the visible region by thermal lensing spectroscopy,” J. Chem. Phys. 66, 664–668 (1977).
[CrossRef]

Byer, R. L.

J. Eggleston and R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. 16, 850–853 (1980).
[CrossRef]

Campillo, A. J.

H-B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
[CrossRef]

H.-B. Lin, A. L. Huston, B. L. Justus, and A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614–616 (1986).
[CrossRef] [PubMed]

H-B. Lin, J. D. Eversole, and A. J. Campillo, “Identification of morphology-dependent resonances in stimulated Raman scattering from microdroplets,” Opt. Commun. (to be published).

J. D. Eversole, H-B. Lin, A. L. Huston, and A. J. Campillo, “Spherical cavity mode assignments of optical resonances in microdroplets using elastic scattering,” J. Opt. Soc. Am. A (to be published).

Cantrell, C. D.

Chang, R. K.

J.-Z. Zhang and R. K. Chang, “Generation and suppression of stimulated Brillouin scattering in single liquid droplets,” J. Opt. Soc. Am. B 16, 151–153 (1989).
[CrossRef]

J.-Z. Zhang, D. H. Leach, and R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated scattering,” Opt. Lett. 13, 270–272 (1988).
[CrossRef] [PubMed]

W.-F. Hsieh, J.-b. Zheng, and R. K. Chang, “Time dependence of multiorder stimulated Raman scattering from single droplets,” Opt. Lett. 13, 497–499 (1988).
[CrossRef] [PubMed]

D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26, 1348–1356 (1987).
[CrossRef] [PubMed]

S.-X. Qian and R. K. Chang, “Multiorder Stokes emission from micrometer-size droplets,” Phys. Rev. Lett. 56, 926–929 (1986).
[CrossRef] [PubMed]

J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
[CrossRef] [PubMed]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
[CrossRef] [PubMed]

J. F. Owen, P. W. Barber, B. J. Messinger, and R. K. Chang, “Determination of optical-fiber diameter from resonances in the elastic scattering spectrum,” Opt. Lett. 6, 272–274 (1981).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. E. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Chitanvis, S. M.

Chýlek, P.

Conwell, P. R.

Creegan, E.

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

Eggleston, J.

J. Eggleston and R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. 16, 850–853 (1980).
[CrossRef]

Eversole, J. D.

H-B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
[CrossRef]

H-B. Lin, J. D. Eversole, and A. J. Campillo, “Identification of morphology-dependent resonances in stimulated Raman scattering from microdroplets,” Opt. Commun. (to be published).

J. D. Eversole, H-B. Lin, A. L. Huston, and A. J. Campillo, “Spherical cavity mode assignments of optical resonances in microdroplets using elastic scattering,” J. Opt. Soc. Am. A (to be published).

Fernandez, G.

Folan, L. M.

Hendricks, C. D.

J. M. Schneider and C. D. Hendricks, “Source of uniform-sized liquid droplets,” Rev. Sci. Instrum. 35, 1349–1350 (1964).
[CrossRef]

Hill, S. C.

Hsieh, W.-F.

Hu, C.

Huston, A. L.

H.-B. Lin, A. L. Huston, B. L. Justus, and A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614–616 (1986).
[CrossRef] [PubMed]

J. D. Eversole, H-B. Lin, A. L. Huston, and A. J. Campillo, “Spherical cavity mode assignments of optical resonances in microdroplets using elastic scattering,” J. Opt. Soc. Am. A (to be published).

Huth, B. G.

B. G. Huth, N. V. Karlov, R. H. Pantell, and H. E. Puthoff, “A quantitative study of the stimulated Raman effect using an off-axis resonator,” IEEE J. Quantum Electron. QE-2, 763–769 (1966).
[CrossRef]

Jarzembski, M. A.

Justus, B. L.

Kaiser, W.

W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. Arechi, ed. (North-Holland, Amsterdam, 1972), pp. 1077–1150.

Karlov, N. V.

B. G. Huth, N. V. Karlov, R. H. Pantell, and H. E. Puthoff, “A quantitative study of the stimulated Raman effect using an off-axis resonator,” IEEE J. Quantum Electron. QE-2, 763–769 (1966).
[CrossRef]

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Kiefer, W.

Latifi, H.

Leach, D. H.

Lin, H.-B.

Lin, H-B.

H-B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
[CrossRef]

J. D. Eversole, H-B. Lin, A. L. Huston, and A. J. Campillo, “Spherical cavity mode assignments of optical resonances in microdroplets using elastic scattering,” J. Opt. Soc. Am. A (to be published).

H-B. Lin, J. D. Eversole, and A. J. Campillo, “Identification of morphology-dependent resonances in stimulated Raman scattering from microdroplets,” Opt. Commun. (to be published).

Liu, B. Y. H.

R. N. Berglund and B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[CrossRef]

Long, M. B.

Long, M. E.

R. L. Swofford, M. E. Long, M. S. Burberry, and A. C. Albrecht, “Free O — H overtone absorption of methanols in the visible region by thermal lensing spectroscopy,” J. Chem. Phys. 66, 664–668 (1977).
[CrossRef]

Maier, M.

W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. Arechi, ed. (North-Holland, Amsterdam, 1972), pp. 1077–1150.

Messinger, B. J.

Owen, J. E.

R. E. Benner, P. W. Barber, J. E. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Owen, J. F.

Pantell, R. H.

B. G. Huth, N. V. Karlov, R. H. Pantell, and H. E. Puthoff, “A quantitative study of the stimulated Raman effect using an off-axis resonator,” IEEE J. Quantum Electron. QE-2, 763–769 (1966).
[CrossRef]

Pendleton, J. D.

Pinnick, R. G.

Puthoff, H. E.

B. G. Huth, N. V. Karlov, R. H. Pantell, and H. E. Puthoff, “A quantitative study of the stimulated Raman effect using an off-axis resonator,” IEEE J. Quantum Electron. QE-2, 763–769 (1966).
[CrossRef]

Qian, S.-X.

Rushforth, C. K.

Schneider, J. M.

J. M. Schneider and C. D. Hendricks, “Source of uniform-sized liquid droplets,” Rev. Sci. Instrum. 35, 1349–1350 (1964).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 141–186.

Snow, J. B.

Srivastava, V.

Stone, J.

Swofford, R. L.

R. L. Swofford, M. E. Long, M. S. Burberry, and A. C. Albrecht, “Free O — H overtone absorption of methanols in the visible region by thermal lensing spectroscopy,” J. Chem. Phys. 66, 664–668 (1977).
[CrossRef]

Thurn, R.

Tzeng, H.-M.

Wall, K. F.

Wang, C.-S.

C.-S. Wang, “The stimulated Raman process,” in Quantum Electronics, Vol. 1, Nonlinear Optics, Part A, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 447–472.

Whinnery, J. R.

Wiscombe, W. J.

W. J. Wiscombe, Mie Scattering Calculations; Advances in Technique and Fast, Vector-Speed Computer Codes, Doc. PB-301388 (National Information Service, Springfield, Va., 1979).

Zhang, J.-Z.

Zheng, J.-b.

Am. J. Phys. (1)

N. Bloembergen, “The stimulated Raman effect,” Am. J. Phys. 35, 989–1023 (1967).
[CrossRef]

Appl. Opt. (5)

Environ. Sci. Technol. (1)

R. N. Berglund and B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[CrossRef]

IEEE J. Quantum Electron. (2)

B. G. Huth, N. V. Karlov, R. H. Pantell, and H. E. Puthoff, “A quantitative study of the stimulated Raman effect using an off-axis resonator,” IEEE J. Quantum Electron. QE-2, 763–769 (1966).
[CrossRef]

J. Eggleston and R. L. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. 16, 850–853 (1980).
[CrossRef]

J. Chem. Phys. (1)

R. L. Swofford, M. E. Long, M. S. Burberry, and A. C. Albrecht, “Free O — H overtone absorption of methanols in the visible region by thermal lensing spectroscopy,” J. Chem. Phys. 66, 664–668 (1977).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

Opt. Lett. (10)

T. Baer, “Continuous-wave laser oscillation in a Nd:YAG sphere,” Opt. Lett. 12, 392–394 (1987).
[CrossRef] [PubMed]

J. F. Owen, P. W. Barber, B. J. Messinger, and R. K. Chang, “Determination of optical-fiber diameter from resonances in the elastic scattering spectrum,” Opt. Lett. 6, 272–274 (1981).
[CrossRef] [PubMed]

J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
[CrossRef] [PubMed]

R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, and G. Fernandez, “Stimulated Raman scattering in micrometer-sized droplets: measurements of angular scattering characteristics,” Opt. Lett. 13, 1099–1101 (1988).
[CrossRef] [PubMed]

W.-F. Hsieh, J.-b. Zheng, and R. K. Chang, “Time dependence of multiorder stimulated Raman scattering from single droplets,” Opt. Lett. 13, 497–499 (1988).
[CrossRef] [PubMed]

R. G. Pinnick, A. Biswas, P. Chýlek, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, M. A. Jarzembski, and G. Fernandez, “Stimulated Raman scattering in micrometer-sized droplets: time-resolved measurements,” Opt. Lett. 13, 494–496 (1988).
[CrossRef] [PubMed]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
[CrossRef] [PubMed]

H.-B. Lin, A. L. Huston, B. L. Justus, and A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614–616 (1986).
[CrossRef] [PubMed]

J.-Z. Zhang, D. H. Leach, and R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated scattering,” Opt. Lett. 13, 270–272 (1988).
[CrossRef] [PubMed]

S. Arnold and L. M. Folan, “Energy transfer and the photon lifetime within an aerosol particle,” Opt. Lett. 14, 387–389 (1989).
[CrossRef] [PubMed]

Phys. Rev. A (1)

A. Biswas, H. Latifi, R. L. Armstrong, and R. G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

S.-X. Qian and R. K. Chang, “Multiorder Stokes emission from micrometer-size droplets,” Phys. Rev. Lett. 56, 926–929 (1986).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

R. E. Benner, P. W. Barber, J. E. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[CrossRef]

Rev. Sci. Instrum. (2)

J. M. Schneider and C. D. Hendricks, “Source of uniform-sized liquid droplets,” Rev. Sci. Instrum. 35, 1349–1350 (1964).
[CrossRef]

H-B. Lin, J. D. Eversole, and A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
[CrossRef]

Other (8)

H-B. Lin, J. D. Eversole, and A. J. Campillo, “Identification of morphology-dependent resonances in stimulated Raman scattering from microdroplets,” Opt. Commun. (to be published).

J. D. Eversole, H-B. Lin, A. L. Huston, and A. J. Campillo, “Spherical cavity mode assignments of optical resonances in microdroplets using elastic scattering,” J. Opt. Soc. Am. A (to be published).

W. J. Wiscombe, Mie Scattering Calculations; Advances in Technique and Fast, Vector-Speed Computer Codes, Doc. PB-301388 (National Information Service, Springfield, Va., 1979).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

C.-S. Wang, “The stimulated Raman process,” in Quantum Electronics, Vol. 1, Nonlinear Optics, Part A, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 447–472.

S. C. Hill and R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

W. Kaiser and M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. Arechi, ed. (North-Holland, Amsterdam, 1972), pp. 1077–1150.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), pp. 141–186.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental apparatus.

Fig. 2
Fig. 2

Elastic scattering versus droplet size: (a) An experimental ethanol spectrum obtained by ramping the vibrating orifice frequency from 190.0 to 250.0 kHz and observing 632.8-nm elastic scattered light at 88.9°. (b) Spectrum calculated from Lorenz–Mie theory assuming an index of refraction of 1.362. The size scale of (b) is nonlinear (it obeys an inverse 1/3 power frequency/size functional form20) in order to match the linear frequency scale of (a). This procedure permits an accurate assessment of droplet size at all operating frequencies of the aerosol generator.

Fig. 3
Fig. 3

Elastic scattering test of size stability of a typical monodisperse aerosol stream. Time proceeds from right to left. The size of the droplets was adjusted at the right-hand side by setting the vibrating orifice frequency to bring a MDR into coincidence with a 632.8-nm laser. The minimal (10%) decrease in scattering intensity after 30 min, corresponding to a droplet size drift of only 1 part in 105/min, permits considerable confidence to be placed in the subsequent MDR assignments.

Fig. 4
Fig. 4

(a) Experimental elastic scattering versus droplet size obtained at 532 nm with a cw mode-locked, doubled Nd:YAG laser and the same experimental conditions as in Fig. 2(a). (b) Curve calculated from Lorenz–Mie theory using the procedure outlined in the text.

Fig. 5
Fig. 5

SRS intensity versus droplet size obtained with a high-repetition-rate Q-switched and mode-locked 532-nm source having intensities of (a) 0.3, (b) 0.75, and (c) 1.5 GW/cm2 and a frequency ramped VOAG. The peaks correspond to input resonances at 532 nm that are normally hidden in elastic scattering.

Fig. 6
Fig. 6

(a) 532-nm elastic scattering spectrum of Fig. 4(a) reproduced with the corresponding calculated placement (b) of all MDR’s of order 1–7. Half-arrows pointing up refer to TE modes and down refer to TM modes. The spectrum of Fig. 5(b) is reproduced in (c). The observed peaks align well with the calculated placement of TM2, TE2, and TE3 modes.

Fig. 7
Fig. 7

SRS intensity versus droplet size obtained at a pump intensity of 1 GW/cm2. The calculated positions of the following MDR’s are determined to coincide with the lettered peaks: A, TE1603; B, TE1662; C, TE1554; D, TE1603; E, TM1652; F, TM1544; G, TM1593; H, TE1652; I, TE1544; J, TE1593, TM1642; K, TM1534; L, TM1583; M, TE1642; N, TE1534; O, TE1583; P, TM1632; Q, TM1573; R, TE1632; S, TE1573; T, TM1622; U, TM1563; V, TE1622; W, TE1514; and X, TM1612, TE1563.

Tables (2)

Tables Icon

Table 1 Resonance Widths, Peak Intensities, and Mode-Coupling Efficiencies versus Mode Number and Order

Tables Icon

Table 2 Calculated Q Values, Effective Incident and Circulating Losses, Raman Gains, and Output Coupling Efficiencies for Various Input–Output Mode Combinationsa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f vo = 3 F 4 π a 3 , F = 4 π Δ f vo 3 [ ( 1 / a 1 3 ) ( 1 / a 2 3 ) ] .
I ( r ) = I 0 n = 1 { ( 2 n + 1 ) j n 2 ( m x r a ) | d n | 2 + [ ( n + 1 ) j n 1 2 ( m x r a ) + n j n + 1 2 ( m x r a ) ] | c n | 2 } .
c n = m i / x h n ( 2 ) ( x ) [ m x j n ( m x ) ] m j n ( m x ) [ x h n ( 2 ) ( x ) ] ,
d n = i / x h n ( 2 ) ( x ) [ m x j n ( m x ) ] j n ( m x ) [ x h n ( 2 ) ( x ) ] ,
Q = ω W d W / d t ,
d W d t = 2 π m x A m I cir Q .
I cir = h Q I 0 2 π m x = h I 0 2 π m Δ x .

Metrics