Abstract

Two-photon, double-resonance photoionization spectroscopy has been used to study highly excited bound and autoionizing states in Ti (Ti i). Multichannel quantum defect theory has been used to analyze the spectra and to determine the ionization potential of Ti. A new ionization potential of 55 072.5 ± 0.3 cm−1 is reported, which differs significantly from the previously accepted value.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Johansson, C. R. Cowley, J. Opt. Soc. Am. B 5, 2264 (1988).
    [CrossRef]
  2. E. F. Worden, B. Comaskey, J. Densberger, J. Christensen, J. M. McAfee, J. A. Paisner, J. Opt. Soc. Am. B 1, 314 (1984).
    [CrossRef]
  3. D. M. Rayner, S. A. Mitchell, O. L. Bourne, P. A. Hackett, J. Opt. Soc. Am. B 4, 900 (1987).
    [CrossRef]
  4. C. L. Callender, P. A. Hackett, D. M. Rayner, J. Opt. Soc. Am. B 5, 614 (1988).
    [CrossRef]
  5. V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, P. R. K. Rao, J. Phys. B 20, 6021 (1987).
    [CrossRef]
  6. L.-G. Wang, R. D. Knight, Phys. Rev. A 34, 3902 (1986).
    [CrossRef] [PubMed]
  7. J. Sugar, C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2, 147 (1985).
  8. C. Roth, J. Res. Natl. Bur. Stand. 73A, 497 (1969).
    [CrossRef]
  9. A. Giusti-Suzor, U. Fano, J. Phys. B 17, 215 (1984).
    [CrossRef]
  10. W. E. Cooke, C. L. Cromer, Phys. Rev. A 32, 2725 (1985).
    [CrossRef] [PubMed]
  11. S. Huldt, S. Johansson, U. Litzen, J.-F. Wyart, Phys. Scr. 25, 401 (1982).
    [CrossRef]
  12. R. Page, IBM Almaden Research Center, Palo Alto, California (personal communication).

1988

1987

D. M. Rayner, S. A. Mitchell, O. L. Bourne, P. A. Hackett, J. Opt. Soc. Am. B 4, 900 (1987).
[CrossRef]

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, P. R. K. Rao, J. Phys. B 20, 6021 (1987).
[CrossRef]

1986

L.-G. Wang, R. D. Knight, Phys. Rev. A 34, 3902 (1986).
[CrossRef] [PubMed]

1985

J. Sugar, C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2, 147 (1985).

W. E. Cooke, C. L. Cromer, Phys. Rev. A 32, 2725 (1985).
[CrossRef] [PubMed]

1984

1982

S. Huldt, S. Johansson, U. Litzen, J.-F. Wyart, Phys. Scr. 25, 401 (1982).
[CrossRef]

1969

C. Roth, J. Res. Natl. Bur. Stand. 73A, 497 (1969).
[CrossRef]

Bourne, O. L.

Callender, C. L.

Christensen, J.

Comaskey, B.

Cooke, W. E.

W. E. Cooke, C. L. Cromer, Phys. Rev. A 32, 2725 (1985).
[CrossRef] [PubMed]

Corliss, C.

J. Sugar, C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2, 147 (1985).

Cowley, C. R.

Cromer, C. L.

W. E. Cooke, C. L. Cromer, Phys. Rev. A 32, 2725 (1985).
[CrossRef] [PubMed]

Densberger, J.

Fano, U.

A. Giusti-Suzor, U. Fano, J. Phys. B 17, 215 (1984).
[CrossRef]

Giusti-Suzor, A.

A. Giusti-Suzor, U. Fano, J. Phys. B 17, 215 (1984).
[CrossRef]

Hackett, P. A.

Huldt, S.

S. Huldt, S. Johansson, U. Litzen, J.-F. Wyart, Phys. Scr. 25, 401 (1982).
[CrossRef]

Johansson, S.

S. Johansson, C. R. Cowley, J. Opt. Soc. Am. B 5, 2264 (1988).
[CrossRef]

S. Huldt, S. Johansson, U. Litzen, J.-F. Wyart, Phys. Scr. 25, 401 (1982).
[CrossRef]

Kapoor, R.

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, P. R. K. Rao, J. Phys. B 20, 6021 (1987).
[CrossRef]

Knight, R. D.

L.-G. Wang, R. D. Knight, Phys. Rev. A 34, 3902 (1986).
[CrossRef] [PubMed]

Lal, B.

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, P. R. K. Rao, J. Phys. B 20, 6021 (1987).
[CrossRef]

Litzen, U.

S. Huldt, S. Johansson, U. Litzen, J.-F. Wyart, Phys. Scr. 25, 401 (1982).
[CrossRef]

Mago, V. K.

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, P. R. K. Rao, J. Phys. B 20, 6021 (1987).
[CrossRef]

McAfee, J. M.

Mitchell, S. A.

Page, R.

R. Page, IBM Almaden Research Center, Palo Alto, California (personal communication).

Paisner, J. A.

Rao, P. R. K.

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, P. R. K. Rao, J. Phys. B 20, 6021 (1987).
[CrossRef]

Ray, A. K.

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, P. R. K. Rao, J. Phys. B 20, 6021 (1987).
[CrossRef]

Rayner, D. M.

Roth, C.

C. Roth, J. Res. Natl. Bur. Stand. 73A, 497 (1969).
[CrossRef]

Sharma, S. D.

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, P. R. K. Rao, J. Phys. B 20, 6021 (1987).
[CrossRef]

Sugar, J.

J. Sugar, C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2, 147 (1985).

Wang, L.-G.

L.-G. Wang, R. D. Knight, Phys. Rev. A 34, 3902 (1986).
[CrossRef] [PubMed]

Worden, E. F.

Wyart, J.-F.

S. Huldt, S. Johansson, U. Litzen, J.-F. Wyart, Phys. Scr. 25, 401 (1982).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, P. R. K. Rao, J. Phys. B 20, 6021 (1987).
[CrossRef]

A. Giusti-Suzor, U. Fano, J. Phys. B 17, 215 (1984).
[CrossRef]

J. Phys. Chem. Ref. Data

J. Sugar, C. Corliss, J. Phys. Chem. Ref. Data 14, Suppl. 2, 147 (1985).

J. Res. Natl. Bur. Stand.

C. Roth, J. Res. Natl. Bur. Stand. 73A, 497 (1969).
[CrossRef]

Phys. Rev. A

W. E. Cooke, C. L. Cromer, Phys. Rev. A 32, 2725 (1985).
[CrossRef] [PubMed]

L.-G. Wang, R. D. Knight, Phys. Rev. A 34, 3902 (1986).
[CrossRef] [PubMed]

Phys. Scr.

S. Huldt, S. Johansson, U. Litzen, J.-F. Wyart, Phys. Scr. 25, 401 (1982).
[CrossRef]

Other

R. Page, IBM Almaden Research Center, Palo Alto, California (personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Portion of the autoionization spectrum of Ti as excited from intermediate level 3 d 2 4 s 4 p z 3 G 4 ° . The Ti+a4F5/2 threshold is indicated by the arrow, while the a4F3/2 channel is open throughout this energy region. For n ≥ 34, the (a4F7/2)nd lines divide into an unperturbed series (solid markers) and a perturbed series (dashed markers).

Fig. 2
Fig. 2

Field-ionization spectrum of Ti Rydberg series excited from the 3 d 2 4 s 4 p z 3 G 3 ° intermediate state.

Fig. 3
Fig. 3

Autoionization spectrum of Ti Rydberg series excited from 3 d 2 4 s 4 p z 3 D 2 ° the intermediate state.

Fig. 4
Fig. 4

Lu–Fano diagram from the two-channel MQDT analysis of the Ti spectrum in Fig. 2. Rydberg series are converging to 4F3/2 (channel 1) and 4F5/2 (channel 2) of Ti+. The rms deviation of the fitted spectrum is 0.23 cm−1.

Tables (3)

Tables Icon

Table 1 Energy Levels Observed through Intermediate State z 3 G 4 °

Tables Icon

Table 2 Energy Levels Observed through Intermediate State z 3 G 3 ° With Calculated Values Based on the MQDT Parameters of the Texta

Tables Icon

Table 3 Energy Levels Observed through Intermediate State z 3 D 2 ° With Calculated Values Based on the MQDT Parameters of the Texta

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E = I 1 R Ti / ν 1 2
E = I 2 R Ti / ν 2 2 ,
ν 1 = [ 1 / ν 2 2 ( I 2 I 1 ) / R Ti ] 1 / 2 .
| tan [ π ( ν 1 + δ 1 ) ] R R tan [ π ( ν 2 + δ 2 ) ] | = 0 .

Metrics