Abstract

A method for using electric-field-induced second-harmonic generation to determine microscopic elastic constants of dye-doped polymer systems is presented. This method allows for a direct measurement of the interaction between an optically nonlinear dye molecule and a surrounding optically linear host material. The bulk elastic constant determined by extrapolating the microscopic values is found to be ten times smaller than that determined through the use of a standard mechanical technique, suggesting that the physical interaction of the dye and the host is weak.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Boyd, “Optical second-harmonic generation as an orientational probe in poled polymers,” Thin Solid Films 152, 295 (1987).
    [CrossRef]
  2. P. Le Barny, “Chemistry of polymer molecules for ultrathin films,” Thin Solid Films 152, 99 (1987).
    [CrossRef]
  3. C. S. Willand, D. J. Williams, “Nonlinear optical properties of polymeric materials,” Ber. Bunsenges. Phys. Chem. 91, 1304 (1987).
  4. S. Matsumoto, K. Kubodera, T. Kurihara, T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987).
    [CrossRef]
  5. R. D. Martino, D. Haas, G. Khanarian, T. Leslie, H. T. Man, J. Riggs, M. Sansone, J. Stamitoff, C. Teng, H. Yoon, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 65.
  6. A. C. Griffin, A. M. Bhatti, G. A. Howell, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 115.
  7. T. Watanabe, K. Yoshinaga, D. Fichou, Y. Chatani, S. Miyata, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 339.
  8. P. D. Calvert, B. D. Moyle, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 357.
  9. H. Uchiki, T. Kobayashi, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 373.
  10. K. D. Singer, J. E. Sohn, S. J. Lalama, “Second-harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248 (1986).
    [CrossRef]
  11. J. E. Sohn, K. D. Singer, M. G. Kuzyk, in Polymers for High Technology, Electronics and Photonics, M. J. Bowden, S. R. Turner, eds., ACS Symp. Ser.346 (1987).
  12. C. Ye, T. J. Marks, J. Yang, G. K. Wong, “Synthesis of molecular arrays with nonlinear optical properties. Second harmonic generation by glassy polymers,” Macromolecules 20, 2322 (1987).
    [CrossRef]
  13. H. L. Hampsch, J. Yang, G. K. Wong, J. M. Torkelson, “Orientation and second harmonic generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526 (1988).
    [CrossRef]
  14. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
    [CrossRef]
  15. J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031 (1988).
    [CrossRef]
  16. M. G. Kuzyk, C. W. Dirk, “Quick and simple method to measure third-order nonlinear optical properties of dye-doped polymer films,” Appl. Phys. Lett. 54, 1628 (1989).
    [CrossRef]
  17. K. D. Singer, M. G. Kuzyk, J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987).
    [CrossRef]
  18. J. D. LeGrange, M. G. Kuzyk, K. D. Singer, “Effects of order on nonlinear optical processes in organic molecular materials,” Mol. Cryst. Liq. Cryst. 150b, 567 (1987).
  19. M. G. Kuzyk, K. D. Singer, H. E. Zahn, L. A. King, “Second-order nonlinear-optical tensor properties of poled films under stress,” J. Opt. Soc. Am. B 6, 742 (1989).
    [CrossRef]
  20. See, for example, J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  21. K. D. Singer, M. G. Kuzyk, J. E. Sohn, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 189.
    [CrossRef]
  22. M. Weinberg, “Shear testing of neat thermoplastic resins and their unidirectional graphite composites,” Composites 18, 386 (1987).
    [CrossRef]
  23. S. Iwayanagi, “On the viscoelastic properties of polymethyl methacrylate,” J. Sci. Res. Inst. Jpn. 49, 4 (1955).
  24. K. Sato, H. Nakane, T. Hideshima, S. Iwayanagi, “Creep of polymethyl methacrylate at low temperature,” J. Phys. Soc. Jpn. 9, 413 (1954).
    [CrossRef]
  25. M. N. Rahaman, J. Scanlan, “Non-linear viscoelastic properties of solid polymers,” Polymer 22, 673 (1981).
    [CrossRef]
  26. See, for example, J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).
  27. Depending on the model relating the microscopic to the macroscopic values, the appropriate factors can be of the form V, V(h/r), and V(h/r)(h/R), where (h/r) is the molecular aspect ratio and (h/R) is the ratio of the molecular length to the polymer radius of gyration. For simplicity, we use the molecular volume factor.

1989 (2)

M. G. Kuzyk, C. W. Dirk, “Quick and simple method to measure third-order nonlinear optical properties of dye-doped polymer films,” Appl. Phys. Lett. 54, 1628 (1989).
[CrossRef]

M. G. Kuzyk, K. D. Singer, H. E. Zahn, L. A. King, “Second-order nonlinear-optical tensor properties of poled films under stress,” J. Opt. Soc. Am. B 6, 742 (1989).
[CrossRef]

1988 (3)

H. L. Hampsch, J. Yang, G. K. Wong, J. M. Torkelson, “Orientation and second harmonic generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526 (1988).
[CrossRef]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031 (1988).
[CrossRef]

1987 (8)

C. Ye, T. J. Marks, J. Yang, G. K. Wong, “Synthesis of molecular arrays with nonlinear optical properties. Second harmonic generation by glassy polymers,” Macromolecules 20, 2322 (1987).
[CrossRef]

J. D. LeGrange, M. G. Kuzyk, K. D. Singer, “Effects of order on nonlinear optical processes in organic molecular materials,” Mol. Cryst. Liq. Cryst. 150b, 567 (1987).

K. D. Singer, M. G. Kuzyk, J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987).
[CrossRef]

M. Weinberg, “Shear testing of neat thermoplastic resins and their unidirectional graphite composites,” Composites 18, 386 (1987).
[CrossRef]

G. T. Boyd, “Optical second-harmonic generation as an orientational probe in poled polymers,” Thin Solid Films 152, 295 (1987).
[CrossRef]

P. Le Barny, “Chemistry of polymer molecules for ultrathin films,” Thin Solid Films 152, 99 (1987).
[CrossRef]

C. S. Willand, D. J. Williams, “Nonlinear optical properties of polymeric materials,” Ber. Bunsenges. Phys. Chem. 91, 1304 (1987).

S. Matsumoto, K. Kubodera, T. Kurihara, T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987).
[CrossRef]

1986 (1)

K. D. Singer, J. E. Sohn, S. J. Lalama, “Second-harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

1981 (1)

M. N. Rahaman, J. Scanlan, “Non-linear viscoelastic properties of solid polymers,” Polymer 22, 673 (1981).
[CrossRef]

1955 (1)

S. Iwayanagi, “On the viscoelastic properties of polymethyl methacrylate,” J. Sci. Res. Inst. Jpn. 49, 4 (1955).

1954 (1)

K. Sato, H. Nakane, T. Hideshima, S. Iwayanagi, “Creep of polymethyl methacrylate at low temperature,” J. Phys. Soc. Jpn. 9, 413 (1954).
[CrossRef]

Bhatti, A. M.

A. C. Griffin, A. M. Bhatti, G. A. Howell, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 115.

Boyd, G. T.

G. T. Boyd, “Optical second-harmonic generation as an orientational probe in poled polymers,” Thin Solid Films 152, 295 (1987).
[CrossRef]

Calvert, P. D.

P. D. Calvert, B. D. Moyle, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 357.

Chatani, Y.

T. Watanabe, K. Yoshinaga, D. Fichou, Y. Chatani, S. Miyata, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 339.

Comizzoli, R. B.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

Dirk, C. W.

M. G. Kuzyk, C. W. Dirk, “Quick and simple method to measure third-order nonlinear optical properties of dye-doped polymer films,” Appl. Phys. Lett. 54, 1628 (1989).
[CrossRef]

Ferry, J. D.

See, for example, J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).

Fichou, D.

T. Watanabe, K. Yoshinaga, D. Fichou, Y. Chatani, S. Miyata, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 339.

Griffin, A. C.

A. C. Griffin, A. M. Bhatti, G. A. Howell, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 115.

Haas, D.

R. D. Martino, D. Haas, G. Khanarian, T. Leslie, H. T. Man, J. Riggs, M. Sansone, J. Stamitoff, C. Teng, H. Yoon, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 65.

Hampsch, H. L.

H. L. Hampsch, J. Yang, G. K. Wong, J. M. Torkelson, “Orientation and second harmonic generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526 (1988).
[CrossRef]

Hideshima, T.

K. Sato, H. Nakane, T. Hideshima, S. Iwayanagi, “Creep of polymethyl methacrylate at low temperature,” J. Phys. Soc. Jpn. 9, 413 (1954).
[CrossRef]

Holland, W. R.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

Howell, G. A.

A. C. Griffin, A. M. Bhatti, G. A. Howell, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 115.

Iwayanagi, S.

S. Iwayanagi, “On the viscoelastic properties of polymethyl methacrylate,” J. Sci. Res. Inst. Jpn. 49, 4 (1955).

K. Sato, H. Nakane, T. Hideshima, S. Iwayanagi, “Creep of polymethyl methacrylate at low temperature,” J. Phys. Soc. Jpn. 9, 413 (1954).
[CrossRef]

Jackson, J. D.

See, for example, J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Kaino, T.

S. Matsumoto, K. Kubodera, T. Kurihara, T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987).
[CrossRef]

Katz, H. E.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

Khanarian, G.

R. D. Martino, D. Haas, G. Khanarian, T. Leslie, H. T. Man, J. Riggs, M. Sansone, J. Stamitoff, C. Teng, H. Yoon, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 65.

King, L. A.

Kobayashi, T.

H. Uchiki, T. Kobayashi, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 373.

Kubodera, K.

S. Matsumoto, K. Kubodera, T. Kurihara, T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987).
[CrossRef]

Kurihara, T.

S. Matsumoto, K. Kubodera, T. Kurihara, T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987).
[CrossRef]

Kuzyk, M. G.

M. G. Kuzyk, K. D. Singer, H. E. Zahn, L. A. King, “Second-order nonlinear-optical tensor properties of poled films under stress,” J. Opt. Soc. Am. B 6, 742 (1989).
[CrossRef]

M. G. Kuzyk, C. W. Dirk, “Quick and simple method to measure third-order nonlinear optical properties of dye-doped polymer films,” Appl. Phys. Lett. 54, 1628 (1989).
[CrossRef]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

J. D. LeGrange, M. G. Kuzyk, K. D. Singer, “Effects of order on nonlinear optical processes in organic molecular materials,” Mol. Cryst. Liq. Cryst. 150b, 567 (1987).

K. D. Singer, M. G. Kuzyk, J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987).
[CrossRef]

J. E. Sohn, K. D. Singer, M. G. Kuzyk, in Polymers for High Technology, Electronics and Photonics, M. J. Bowden, S. R. Turner, eds., ACS Symp. Ser.346 (1987).

K. D. Singer, M. G. Kuzyk, J. E. Sohn, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 189.
[CrossRef]

Lalama, S. J.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

K. D. Singer, J. E. Sohn, S. J. Lalama, “Second-harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

Le Barny, P.

P. Le Barny, “Chemistry of polymer molecules for ultrathin films,” Thin Solid Films 152, 99 (1987).
[CrossRef]

LeGrange, J. D.

J. D. LeGrange, M. G. Kuzyk, K. D. Singer, “Effects of order on nonlinear optical processes in organic molecular materials,” Mol. Cryst. Liq. Cryst. 150b, 567 (1987).

Leslie, T.

R. D. Martino, D. Haas, G. Khanarian, T. Leslie, H. T. Man, J. Riggs, M. Sansone, J. Stamitoff, C. Teng, H. Yoon, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 65.

Lipscomb, G. F.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031 (1988).
[CrossRef]

Lytel, R.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031 (1988).
[CrossRef]

Man, H. T.

R. D. Martino, D. Haas, G. Khanarian, T. Leslie, H. T. Man, J. Riggs, M. Sansone, J. Stamitoff, C. Teng, H. Yoon, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 65.

Marks, T. J.

C. Ye, T. J. Marks, J. Yang, G. K. Wong, “Synthesis of molecular arrays with nonlinear optical properties. Second harmonic generation by glassy polymers,” Macromolecules 20, 2322 (1987).
[CrossRef]

Martino, R. D.

R. D. Martino, D. Haas, G. Khanarian, T. Leslie, H. T. Man, J. Riggs, M. Sansone, J. Stamitoff, C. Teng, H. Yoon, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 65.

Matsumoto, S.

S. Matsumoto, K. Kubodera, T. Kurihara, T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987).
[CrossRef]

Miyata, S.

T. Watanabe, K. Yoshinaga, D. Fichou, Y. Chatani, S. Miyata, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 339.

Moyle, B. D.

P. D. Calvert, B. D. Moyle, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 357.

Nakane, H.

K. Sato, H. Nakane, T. Hideshima, S. Iwayanagi, “Creep of polymethyl methacrylate at low temperature,” J. Phys. Soc. Jpn. 9, 413 (1954).
[CrossRef]

Rahaman, M. N.

M. N. Rahaman, J. Scanlan, “Non-linear viscoelastic properties of solid polymers,” Polymer 22, 673 (1981).
[CrossRef]

Riggs, J.

R. D. Martino, D. Haas, G. Khanarian, T. Leslie, H. T. Man, J. Riggs, M. Sansone, J. Stamitoff, C. Teng, H. Yoon, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 65.

Sansone, M.

R. D. Martino, D. Haas, G. Khanarian, T. Leslie, H. T. Man, J. Riggs, M. Sansone, J. Stamitoff, C. Teng, H. Yoon, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 65.

Sato, K.

K. Sato, H. Nakane, T. Hideshima, S. Iwayanagi, “Creep of polymethyl methacrylate at low temperature,” J. Phys. Soc. Jpn. 9, 413 (1954).
[CrossRef]

Scanlan, J.

M. N. Rahaman, J. Scanlan, “Non-linear viscoelastic properties of solid polymers,” Polymer 22, 673 (1981).
[CrossRef]

Schilling, M. L.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

Singer, K. D.

M. G. Kuzyk, K. D. Singer, H. E. Zahn, L. A. King, “Second-order nonlinear-optical tensor properties of poled films under stress,” J. Opt. Soc. Am. B 6, 742 (1989).
[CrossRef]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

J. D. LeGrange, M. G. Kuzyk, K. D. Singer, “Effects of order on nonlinear optical processes in organic molecular materials,” Mol. Cryst. Liq. Cryst. 150b, 567 (1987).

K. D. Singer, M. G. Kuzyk, J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987).
[CrossRef]

K. D. Singer, J. E. Sohn, S. J. Lalama, “Second-harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

K. D. Singer, M. G. Kuzyk, J. E. Sohn, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 189.
[CrossRef]

J. E. Sohn, K. D. Singer, M. G. Kuzyk, in Polymers for High Technology, Electronics and Photonics, M. J. Bowden, S. R. Turner, eds., ACS Symp. Ser.346 (1987).

Sohn, J. E.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

K. D. Singer, M. G. Kuzyk, J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968 (1987).
[CrossRef]

K. D. Singer, J. E. Sohn, S. J. Lalama, “Second-harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

K. D. Singer, M. G. Kuzyk, J. E. Sohn, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 189.
[CrossRef]

J. E. Sohn, K. D. Singer, M. G. Kuzyk, in Polymers for High Technology, Electronics and Photonics, M. J. Bowden, S. R. Turner, eds., ACS Symp. Ser.346 (1987).

Stamitoff, J.

R. D. Martino, D. Haas, G. Khanarian, T. Leslie, H. T. Man, J. Riggs, M. Sansone, J. Stamitoff, C. Teng, H. Yoon, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 65.

Stiller, M. A.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031 (1988).
[CrossRef]

Teng, C.

R. D. Martino, D. Haas, G. Khanarian, T. Leslie, H. T. Man, J. Riggs, M. Sansone, J. Stamitoff, C. Teng, H. Yoon, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 65.

Thackara, J. I.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031 (1988).
[CrossRef]

Ticknor, A. J.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031 (1988).
[CrossRef]

Torkelson, J. M.

H. L. Hampsch, J. Yang, G. K. Wong, J. M. Torkelson, “Orientation and second harmonic generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526 (1988).
[CrossRef]

Uchiki, H.

H. Uchiki, T. Kobayashi, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 373.

Watanabe, T.

T. Watanabe, K. Yoshinaga, D. Fichou, Y. Chatani, S. Miyata, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 339.

Weinberg, M.

M. Weinberg, “Shear testing of neat thermoplastic resins and their unidirectional graphite composites,” Composites 18, 386 (1987).
[CrossRef]

Willand, C. S.

C. S. Willand, D. J. Williams, “Nonlinear optical properties of polymeric materials,” Ber. Bunsenges. Phys. Chem. 91, 1304 (1987).

Williams, D. J.

C. S. Willand, D. J. Williams, “Nonlinear optical properties of polymeric materials,” Ber. Bunsenges. Phys. Chem. 91, 1304 (1987).

Wong, G. K.

H. L. Hampsch, J. Yang, G. K. Wong, J. M. Torkelson, “Orientation and second harmonic generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526 (1988).
[CrossRef]

C. Ye, T. J. Marks, J. Yang, G. K. Wong, “Synthesis of molecular arrays with nonlinear optical properties. Second harmonic generation by glassy polymers,” Macromolecules 20, 2322 (1987).
[CrossRef]

Yang, J.

H. L. Hampsch, J. Yang, G. K. Wong, J. M. Torkelson, “Orientation and second harmonic generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526 (1988).
[CrossRef]

C. Ye, T. J. Marks, J. Yang, G. K. Wong, “Synthesis of molecular arrays with nonlinear optical properties. Second harmonic generation by glassy polymers,” Macromolecules 20, 2322 (1987).
[CrossRef]

Ye, C.

C. Ye, T. J. Marks, J. Yang, G. K. Wong, “Synthesis of molecular arrays with nonlinear optical properties. Second harmonic generation by glassy polymers,” Macromolecules 20, 2322 (1987).
[CrossRef]

Yoon, H.

R. D. Martino, D. Haas, G. Khanarian, T. Leslie, H. T. Man, J. Riggs, M. Sansone, J. Stamitoff, C. Teng, H. Yoon, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 65.

Yoshinaga, K.

T. Watanabe, K. Yoshinaga, D. Fichou, Y. Chatani, S. Miyata, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 339.

Zahn, H. E.

Appl. Phys. Lett. (5)

S. Matsumoto, K. Kubodera, T. Kurihara, T. Kaino, “Nonlinear optical properties of an azo dye attached polymer,” Appl. Phys. Lett. 51, 1 (1987).
[CrossRef]

K. D. Singer, J. E. Sohn, S. J. Lalama, “Second-harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800 (1988).
[CrossRef]

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52, 1031 (1988).
[CrossRef]

M. G. Kuzyk, C. W. Dirk, “Quick and simple method to measure third-order nonlinear optical properties of dye-doped polymer films,” Appl. Phys. Lett. 54, 1628 (1989).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

C. S. Willand, D. J. Williams, “Nonlinear optical properties of polymeric materials,” Ber. Bunsenges. Phys. Chem. 91, 1304 (1987).

Composites (1)

M. Weinberg, “Shear testing of neat thermoplastic resins and their unidirectional graphite composites,” Composites 18, 386 (1987).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Soc. Jpn. (1)

K. Sato, H. Nakane, T. Hideshima, S. Iwayanagi, “Creep of polymethyl methacrylate at low temperature,” J. Phys. Soc. Jpn. 9, 413 (1954).
[CrossRef]

J. Sci. Res. Inst. Jpn. (1)

S. Iwayanagi, “On the viscoelastic properties of polymethyl methacrylate,” J. Sci. Res. Inst. Jpn. 49, 4 (1955).

Macromolecules (2)

C. Ye, T. J. Marks, J. Yang, G. K. Wong, “Synthesis of molecular arrays with nonlinear optical properties. Second harmonic generation by glassy polymers,” Macromolecules 20, 2322 (1987).
[CrossRef]

H. L. Hampsch, J. Yang, G. K. Wong, J. M. Torkelson, “Orientation and second harmonic generation in doped polystyrene and poly(methyl methacrylate) films,” Macromolecules 21, 526 (1988).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

J. D. LeGrange, M. G. Kuzyk, K. D. Singer, “Effects of order on nonlinear optical processes in organic molecular materials,” Mol. Cryst. Liq. Cryst. 150b, 567 (1987).

Polymer (1)

M. N. Rahaman, J. Scanlan, “Non-linear viscoelastic properties of solid polymers,” Polymer 22, 673 (1981).
[CrossRef]

Thin Solid Films (2)

G. T. Boyd, “Optical second-harmonic generation as an orientational probe in poled polymers,” Thin Solid Films 152, 295 (1987).
[CrossRef]

P. Le Barny, “Chemistry of polymer molecules for ultrathin films,” Thin Solid Films 152, 99 (1987).
[CrossRef]

Other (10)

J. E. Sohn, K. D. Singer, M. G. Kuzyk, in Polymers for High Technology, Electronics and Photonics, M. J. Bowden, S. R. Turner, eds., ACS Symp. Ser.346 (1987).

R. D. Martino, D. Haas, G. Khanarian, T. Leslie, H. T. Man, J. Riggs, M. Sansone, J. Stamitoff, C. Teng, H. Yoon, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 65.

A. C. Griffin, A. M. Bhatti, G. A. Howell, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 115.

T. Watanabe, K. Yoshinaga, D. Fichou, Y. Chatani, S. Miyata, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 339.

P. D. Calvert, B. D. Moyle, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988), p. 357.

H. Uchiki, T. Kobayashi, in Nonlinear Optical Properties of Polymers, A. J. Heeger, J. Orenstein, D. R. Ulrich, eds. (Materials Research Society, Pittsburgh, Pa., 1988),p. 373.

See, for example, J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

K. D. Singer, M. G. Kuzyk, J. E. Sohn, in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 189.
[CrossRef]

See, for example, J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed. (Wiley, New York, 1980).

Depending on the model relating the microscopic to the macroscopic values, the appropriate factors can be of the form V, V(h/r), and V(h/r)(h/R), where (h/r) is the molecular aspect ratio and (h/R) is the ratio of the molecular length to the polymer radius of gyration. For simplicity, we use the molecular volume factor.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Molecules oriented between θ + Δθ and θ + Δθ + i move into the interval between θ and θ + Δθ in the presence of an electric field in the direction, while molecules between θ and θ + o leave the interval between θ and θ + Δθ in the presence of the electric field. The change in the distribution function is calculated from the difference in the numbers of molecules entering and leaving the interval between θ and θθ.

Fig. 2
Fig. 2

Second-harmonic power as a function of time where the applied field is turned on and off. The field is off in regions A, D, and F, and the field is on in regions C and E. In region B the field was slowly turned on, but around the borders of regions D and F the field was switched on and off instantaneously. Note that the field here opposes the orientation of the dye molecule.

Fig. 3
Fig. 3

Power dependence of pp- and sp-polarized second-harmonic generation on the applied electric field. The sp intensity scale is expanded by a factor of ∼2.6 over the pp intensity scale. The true power ratio is given in Table 2. The linear fit to these data is used to determine the order parameter ratio, α, as a function of the applied field.

Fig. 4
Fig. 4

Power dependence of the second-harmonic intensity on the applied electric field.

Fig. 5
Fig. 5

Storage (triangles) and loss modulus (diamonds) of molded PMMA bars as a function of frequency.

Fig. 6
Fig. 6

Storage (triangles) and loss modulus (diamonds) of cast PMMA bars as a function of frequency.

Tables (6)

Tables Icon

Table 1 Properties of Poled Film

Tables Icon

Table 2 Results of Voltage Dependence of Second-Harmonic Generation

Tables Icon

Table 3 Measured Order Parameters

Tables Icon

Table 4 Properties of the Isotropic Film and the Second-Harmonic Coefficientsa

Tables Icon

Table 5 Storage Moduli G′ and Loss Moduli G″ of Cast PMMA/DRI Mixturesa

Tables Icon

Table 6 Elastic Constant of Films and Storage Moduli of Molded PMMA as Measured by Second-Harmonic Generation and Dynamic Spectrometera

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

N ( θ ) = N sin θ G ( cos θ ) Δ θ ,
G ( θ , E p ) = exp [ ( U m * E p cos θ / k T ) ] 1 1 exp [ ( U m * E p cos θ / k T ) ] d cos θ ,
U k = ½ k θ ( θ o θ ) 2 ,
= ( m * E / k θ ) sin θ 1 + ( m * E / k θ ) cos θ .
N out = N sin θ G [ cos ( θ ) ] o ,
N in = N sin ( θ + Δ θ ) G [ cos ( θ + Δ θ ) ] i ,
o = ( m * E / k θ ) sin ( θ + o ) 1 + ( m * E / k θ ) cos ( θ + o ) ,
i = ( m * E / k θ ) sin ( θ + Δ θ + i ) 1 + ( m * E / k θ ) cos ( θ + Δ θ + i ) .
o = m * E k θ sin θ ,
i = m * E k θ sin ( θ + Δ θ ) .
N E = N sin θ G E ( cos θ ) Δ θ = N { sin θ G ( cos θ ) Δ θ + sin ( θ + Δ θ ) × G [ cos ( θ + Δ θ ) ] i sin θ G ( cos θ ) o } .
Δ G = G E G = [ 2 cos θ G ( cos θ ) d G ( cos θ ) d cos θ ( 1 cos 2 θ ) ] m * E k θ .
G ( cos θ ) = l = 0 2 l + 1 2 A l P l ( cos θ ) .
Δ G = l = 0 2 l + 1 2 Δ A l P l ( cos θ ) .
Δ A l = l ( l + 1 ) 2 l + 1 m * E k θ ( A l 1 A l + 1 ) .
G E ( cos θ ) = 1 A 0 + Δ A 0 l = 0 2 l + 1 2 ( A l + Δ A l ) P l ( cos θ ) .
α 0 = A 3 A 1
α E = A 3 + Δ A 3 ( E ) A 1 + Δ A 1 ( E ) ,
α E α 0 ( 1 + Δ A 3 A 3 Δ A 1 A 1 ) .
k θ = m * E α 0 α E α 0 [ 12 ( A 2 A 4 ) 7 A 3 2 ( A 0 A 2 ) 3 A 1 ] .
Δ A 1 = 2 m * E 3 k θ .
Δ A 1 = m * E 3 k T ,
χ 113 ( 2 ) = N β * ( 1 5 A 1 1 5 A 3 ) , χ 333 ( 2 ) = N β * ( 3 5 A 1 + 2 5 A 3 ) ,
χ AT ( 2 ) χ BT ( 2 ) = k θ 2 k T E AT E BT ,
ω = 1 2 π ( k θ I ) 1 / 2 ,

Metrics