Abstract

A new model for optical bistability in layered semiconductor Fabry–Perot étalons is presented. The model accounts for diffraction, carrier diffusion, and thermal conduction. Assuming that the spot size and the thickness of the nonlinear layer are smaller than the diffusion length of the carriers, a simplified model is derived that has been used to design bistable AlGaAs étalons with improved thermal properties.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
    [CrossRef]
  2. D. A. B. Miller, S. D. Smith, A. Johnston, “Optical bistability and signal amplification in a semiconductor crystal: applications of new low-power nonlinear effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
    [CrossRef]
  3. J. L. Jewell, H. M. Gibbs, S. S. Tarng, A. C. Gossard, W. Wiegmann, “Regenerative pulsations from an intrinsic bistable optical device,” Appl. Phys. Lett. 40, 291–293 (1982).
    [CrossRef]
  4. O. Sahlén, E. Masseboeuf, M. Rask, N. Nordell, G. Landgren, “Bistable switching in nonlinear Al0.06Ga0.94As étalons,” Appl. Phys. Lett. 53, 1785–1787 (1988).
    [CrossRef]
  5. R. Kuszelewicz, J. L. Oudar, J. C. Michel, R. Azoulay, “Monolithic GaAs/AlAs optical bistable étalons with improved switching characteristics,” Appl. Phys. Lett. 53, 2138–2140 (1988).
    [CrossRef]
  6. S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in ZnSe interference filters,” Opt. Commun. 51, 357–362 (1984).
    [CrossRef]
  7. G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond room-temperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers,” Appl. Phys. Lett. 45, 1031–1033 (1984).
    [CrossRef]
  8. P. L. Gourley, T. J. Drummond, “Single crystal, epitaxial multilayers of AlAs, GaAs, and Alx Ga1−x As for use as optical interferometric elements,” Appl. Phys. Lett. 49, 489–491 (1986).
    [CrossRef]
  9. J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs monolithic microresonator array,” Appl. Phys. Lett. 51, 94–96 (1987).
    [CrossRef]
  10. O. Sahlén, U. Olin, E. Masseboeuf, G. Landgren, M. Rask, “Optical bistability and gating in metalorganic vapour phase epitaxy grown GaAs étalons operating in reflection,” Appl. Phys. Lett. 50, 1559–1561 (1987).
    [CrossRef]
  11. B. G. Bovard, H. A. Macleod, “Nonlinear behaviour of optical coatings subjected to intense laser irradiation,” J. Modern Opt. 35, 1151–1168 (1988).
    [CrossRef]
  12. E. Abraham, I. J. Ogilvy, “Heat flow in interference filters,” Appl. Phys. B 42, 31–34 (1987).
    [CrossRef]
  13. J. M. Halley, J. E. Midwinter, “Thermal analysis of optical elements and arrays on thick substrates with convection cooling,” J. Appl. Phys. 62, 4055–4064 (1987).
    [CrossRef]
  14. L. Bányai, S. W. Koch, “A simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors,” Z. Phys. B 63, 283–291 (1986).
    [CrossRef]
  15. E. Masseboeuf, O. Sahlén, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-power optical bistability in a thermally stable AlGaAs etalon,” Appl. Phys. Lett. 54, 2290–2292 (1989).
    [CrossRef]
  16. J. V. Moloney, “Bistable behavior of a detuned Fabry–Perot étalon with a gaussian input spatial profile under self-focusing and defocusing conditions,” Opt. Acta 29, 1503–1508 (1982).
    [CrossRef]
  17. D. Weaire, J. P. Kermode, V. M. Dwyer, “The role of diffraction in dispersive optical bistability,” Opt. Commun. 55, 223–228 (1985).
    [CrossRef]
  18. U. Olin, O. Sahlén, “Transverse effects in switching of bistable Fabry–Perot étalons filled with a saturable medium,” J. Opt. Soc. Am. B 4, 319–323 (1987).
    [CrossRef]
  19. W. J. Firth, I. Galbraith, E. M. Wright, “Diffusion effects in bistable optical arrays,” in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds. (Springer-Verlag, Berlin, 1986), p. 193.
    [CrossRef]
  20. U. Olin, “Effects of diffraction and diffusion in dispersive optical bistability in Fabry–Perot étalons,” J. Opt. Soc. B 5, 20–23 (1988).
    [CrossRef]
  21. D. Weaire, C. O’Carroll, C. Wickham, “Dispersive optical bistability with diffusion: a scaling law,” Europhys. Lett. 8, 25–28 (1989).
    [CrossRef]
  22. A. Miller, G. Parry, “Optical bistability in semiconductors with density-dependent carrier lifetimes,” Opt. Quantum Electron. 16, 339–348 (1984).
    [CrossRef]
  23. F. Bloisi, L. Vicari, P. Cavaliere, S. Martellucci, J. Quartieri, P. Mormile, G. Pierattini, “Laser induced thermal profiles in thermally and optically thin films,” Appl. Phys. B 47, 67–69 (1988).
    [CrossRef]
  24. W. J. Firth, I. Galbraith, E. M. Wright, “Diffusion and diffraction in dispersive optical bistability,” J. Opt. Soc. Am. B 2, 1005–1009 (1985).
    [CrossRef]
  25. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  27. M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
    [CrossRef]
  28. U. Olin, “Calculation of resonant optical nonlinearities in semiconductors using the theory of Bányai and Koch,” Tech. Rep. 207 (Institute of Optical Research, Stockholm, 1989).
  29. C. D. Thurmond, “The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc. 122, 1133–1141 (1975).
    [CrossRef]
  30. A. E. Siegman, “Quasi-fast Hankel transform,” Opt. Lett. 1, 13–15 (1977).
    [CrossRef]
  31. S. Penselin, A. Steudel, “Fabry–Perot Interferometerverspiegelungen aus dielektrischen Vielfachschichten,” Z. Phys. 142, 21–41 (1955).
    [CrossRef]
  32. O. Sahlén, “Switching power dependence on spot size in bistable ZnS etalons,” Opt. Commun. 59, 238–242 (1986).
    [CrossRef]
  33. M. A. Afromowitz, “Thermal conductivity of Ga1−x Alx As alloys,” J. Appl. Phys. 44, 1292–1294 (1973).
    [CrossRef]
  34. T. Yao, “Thermal properties of AlAs/GaAs superlattices,” Appl. Phys. Lett. 51, 1798–1800 (1987).
    [CrossRef]
  35. R. E. Fern, A. Onton, “Refractive index of AlAs,” J. Appl. Phys. 42, 3499–3500 (1971).
    [CrossRef]
  36. H. C. Casey, D. D. Sell, M. B. Panish, “Refractive index of Alx Ga1−x As between 1.2 and 1.8 eV,” Appl. Phys. Lett. 24, 63–65 (1974).
    [CrossRef]
  37. P. Asbeck, “Self-absorption effects on the radiative lifetime in GaAs–GaAlAs double heterostructures,” J. Appl. Phys. 48, 820–822 (1977).
    [CrossRef]
  38. For the thermal conductivity of the cement, 0.008 W/cmK was used. Generally, commercial cements have lower thermal conductivities;see for instance, Loctite Tech. Data Sheet, “UV Curing Products” (Loctite, Hertfordshire, UK, 1984).
  39. Thermal stability for more than 100 msec, with a dielectriccoated diamond as heat sink/mirror, has been reported in a reference in J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarian, A. C. Gossard, W. Wiegmann, “3-pJ, 82-MHz optical logic gates in a room-temperature GaAs–AlGaAs multiple-quantum-well étalon,” Appl. Phys. Lett. 46, 918–920 (1985).
    [CrossRef]
  40. B. S. Wherrett, D. Hutchings, D. Russell, “Optically bistable interference filters: optimization considerations,” J. Opt. Soc. Am. B 3, 351–362 (1986);A. Redondo, J. G. Beery, “Thermal conductivity in optical coatings,” J. Appl. Phys. 60, 3882–3885 (1986).
    [CrossRef]
  41. E. Masseboeuf, “Fabrication of thermally stable optically bistable GaAs etalons,” Tech. Rep. 211 (Institute of Optical Research, Stockholm, 1989).

1989 (2)

E. Masseboeuf, O. Sahlén, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-power optical bistability in a thermally stable AlGaAs etalon,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[CrossRef]

D. Weaire, C. O’Carroll, C. Wickham, “Dispersive optical bistability with diffusion: a scaling law,” Europhys. Lett. 8, 25–28 (1989).
[CrossRef]

1988 (5)

F. Bloisi, L. Vicari, P. Cavaliere, S. Martellucci, J. Quartieri, P. Mormile, G. Pierattini, “Laser induced thermal profiles in thermally and optically thin films,” Appl. Phys. B 47, 67–69 (1988).
[CrossRef]

U. Olin, “Effects of diffraction and diffusion in dispersive optical bistability in Fabry–Perot étalons,” J. Opt. Soc. B 5, 20–23 (1988).
[CrossRef]

B. G. Bovard, H. A. Macleod, “Nonlinear behaviour of optical coatings subjected to intense laser irradiation,” J. Modern Opt. 35, 1151–1168 (1988).
[CrossRef]

O. Sahlén, E. Masseboeuf, M. Rask, N. Nordell, G. Landgren, “Bistable switching in nonlinear Al0.06Ga0.94As étalons,” Appl. Phys. Lett. 53, 1785–1787 (1988).
[CrossRef]

R. Kuszelewicz, J. L. Oudar, J. C. Michel, R. Azoulay, “Monolithic GaAs/AlAs optical bistable étalons with improved switching characteristics,” Appl. Phys. Lett. 53, 2138–2140 (1988).
[CrossRef]

1987 (6)

E. Abraham, I. J. Ogilvy, “Heat flow in interference filters,” Appl. Phys. B 42, 31–34 (1987).
[CrossRef]

J. M. Halley, J. E. Midwinter, “Thermal analysis of optical elements and arrays on thick substrates with convection cooling,” J. Appl. Phys. 62, 4055–4064 (1987).
[CrossRef]

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs monolithic microresonator array,” Appl. Phys. Lett. 51, 94–96 (1987).
[CrossRef]

O. Sahlén, U. Olin, E. Masseboeuf, G. Landgren, M. Rask, “Optical bistability and gating in metalorganic vapour phase epitaxy grown GaAs étalons operating in reflection,” Appl. Phys. Lett. 50, 1559–1561 (1987).
[CrossRef]

T. Yao, “Thermal properties of AlAs/GaAs superlattices,” Appl. Phys. Lett. 51, 1798–1800 (1987).
[CrossRef]

U. Olin, O. Sahlén, “Transverse effects in switching of bistable Fabry–Perot étalons filled with a saturable medium,” J. Opt. Soc. Am. B 4, 319–323 (1987).
[CrossRef]

1986 (4)

O. Sahlén, “Switching power dependence on spot size in bistable ZnS etalons,” Opt. Commun. 59, 238–242 (1986).
[CrossRef]

L. Bányai, S. W. Koch, “A simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors,” Z. Phys. B 63, 283–291 (1986).
[CrossRef]

P. L. Gourley, T. J. Drummond, “Single crystal, epitaxial multilayers of AlAs, GaAs, and Alx Ga1−x As for use as optical interferometric elements,” Appl. Phys. Lett. 49, 489–491 (1986).
[CrossRef]

B. S. Wherrett, D. Hutchings, D. Russell, “Optically bistable interference filters: optimization considerations,” J. Opt. Soc. Am. B 3, 351–362 (1986);A. Redondo, J. G. Beery, “Thermal conductivity in optical coatings,” J. Appl. Phys. 60, 3882–3885 (1986).
[CrossRef]

1985 (3)

Thermal stability for more than 100 msec, with a dielectriccoated diamond as heat sink/mirror, has been reported in a reference in J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarian, A. C. Gossard, W. Wiegmann, “3-pJ, 82-MHz optical logic gates in a room-temperature GaAs–AlGaAs multiple-quantum-well étalon,” Appl. Phys. Lett. 46, 918–920 (1985).
[CrossRef]

D. Weaire, J. P. Kermode, V. M. Dwyer, “The role of diffraction in dispersive optical bistability,” Opt. Commun. 55, 223–228 (1985).
[CrossRef]

W. J. Firth, I. Galbraith, E. M. Wright, “Diffusion and diffraction in dispersive optical bistability,” J. Opt. Soc. Am. B 2, 1005–1009 (1985).
[CrossRef]

1984 (3)

A. Miller, G. Parry, “Optical bistability in semiconductors with density-dependent carrier lifetimes,” Opt. Quantum Electron. 16, 339–348 (1984).
[CrossRef]

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in ZnSe interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond room-temperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers,” Appl. Phys. Lett. 45, 1031–1033 (1984).
[CrossRef]

1982 (2)

J. L. Jewell, H. M. Gibbs, S. S. Tarng, A. C. Gossard, W. Wiegmann, “Regenerative pulsations from an intrinsic bistable optical device,” Appl. Phys. Lett. 40, 291–293 (1982).
[CrossRef]

J. V. Moloney, “Bistable behavior of a detuned Fabry–Perot étalon with a gaussian input spatial profile under self-focusing and defocusing conditions,” Opt. Acta 29, 1503–1508 (1982).
[CrossRef]

1979 (2)

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

D. A. B. Miller, S. D. Smith, A. Johnston, “Optical bistability and signal amplification in a semiconductor crystal: applications of new low-power nonlinear effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[CrossRef]

1977 (2)

A. E. Siegman, “Quasi-fast Hankel transform,” Opt. Lett. 1, 13–15 (1977).
[CrossRef]

P. Asbeck, “Self-absorption effects on the radiative lifetime in GaAs–GaAlAs double heterostructures,” J. Appl. Phys. 48, 820–822 (1977).
[CrossRef]

1975 (2)

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

C. D. Thurmond, “The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc. 122, 1133–1141 (1975).
[CrossRef]

1974 (1)

H. C. Casey, D. D. Sell, M. B. Panish, “Refractive index of Alx Ga1−x As between 1.2 and 1.8 eV,” Appl. Phys. Lett. 24, 63–65 (1974).
[CrossRef]

1973 (1)

M. A. Afromowitz, “Thermal conductivity of Ga1−x Alx As alloys,” J. Appl. Phys. 44, 1292–1294 (1973).
[CrossRef]

1971 (1)

R. E. Fern, A. Onton, “Refractive index of AlAs,” J. Appl. Phys. 42, 3499–3500 (1971).
[CrossRef]

1955 (1)

S. Penselin, A. Steudel, “Fabry–Perot Interferometerverspiegelungen aus dielektrischen Vielfachschichten,” Z. Phys. 142, 21–41 (1955).
[CrossRef]

Abraham, E.

E. Abraham, I. J. Ogilvy, “Heat flow in interference filters,” Appl. Phys. B 42, 31–34 (1987).
[CrossRef]

Afromowitz, M. A.

M. A. Afromowitz, “Thermal conductivity of Ga1−x Alx As alloys,” J. Appl. Phys. 44, 1292–1294 (1973).
[CrossRef]

Asbeck, P.

P. Asbeck, “Self-absorption effects on the radiative lifetime in GaAs–GaAlAs double heterostructures,” J. Appl. Phys. 48, 820–822 (1977).
[CrossRef]

Azoulay, R.

R. Kuszelewicz, J. L. Oudar, J. C. Michel, R. Azoulay, “Monolithic GaAs/AlAs optical bistable étalons with improved switching characteristics,” Appl. Phys. Lett. 53, 2138–2140 (1988).
[CrossRef]

Bányai, L.

L. Bányai, S. W. Koch, “A simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors,” Z. Phys. B 63, 283–291 (1986).
[CrossRef]

Bloisi, F.

F. Bloisi, L. Vicari, P. Cavaliere, S. Martellucci, J. Quartieri, P. Mormile, G. Pierattini, “Laser induced thermal profiles in thermally and optically thin films,” Appl. Phys. B 47, 67–69 (1988).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).

Bovard, B. G.

B. G. Bovard, H. A. Macleod, “Nonlinear behaviour of optical coatings subjected to intense laser irradiation,” J. Modern Opt. 35, 1151–1168 (1988).
[CrossRef]

Casey, H. C.

H. C. Casey, D. D. Sell, M. B. Panish, “Refractive index of Alx Ga1−x As between 1.2 and 1.8 eV,” Appl. Phys. Lett. 24, 63–65 (1974).
[CrossRef]

Cavaliere, P.

F. Bloisi, L. Vicari, P. Cavaliere, S. Martellucci, J. Quartieri, P. Mormile, G. Pierattini, “Laser induced thermal profiles in thermally and optically thin films,” Appl. Phys. B 47, 67–69 (1988).
[CrossRef]

Drummond, T. J.

P. L. Gourley, T. J. Drummond, “Single crystal, epitaxial multilayers of AlAs, GaAs, and Alx Ga1−x As for use as optical interferometric elements,” Appl. Phys. Lett. 49, 489–491 (1986).
[CrossRef]

Dwyer, V. M.

D. Weaire, J. P. Kermode, V. M. Dwyer, “The role of diffraction in dispersive optical bistability,” Opt. Commun. 55, 223–228 (1985).
[CrossRef]

English, J. H.

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs monolithic microresonator array,” Appl. Phys. Lett. 51, 94–96 (1987).
[CrossRef]

Fern, R. E.

R. E. Fern, A. Onton, “Refractive index of AlAs,” J. Appl. Phys. 42, 3499–3500 (1971).
[CrossRef]

Firth, W. J.

W. J. Firth, I. Galbraith, E. M. Wright, “Diffusion and diffraction in dispersive optical bistability,” J. Opt. Soc. Am. B 2, 1005–1009 (1985).
[CrossRef]

W. J. Firth, I. Galbraith, E. M. Wright, “Diffusion effects in bistable optical arrays,” in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds. (Springer-Verlag, Berlin, 1986), p. 193.
[CrossRef]

Galbraith, I.

W. J. Firth, I. Galbraith, E. M. Wright, “Diffusion and diffraction in dispersive optical bistability,” J. Opt. Soc. Am. B 2, 1005–1009 (1985).
[CrossRef]

W. J. Firth, I. Galbraith, E. M. Wright, “Diffusion effects in bistable optical arrays,” in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds. (Springer-Verlag, Berlin, 1986), p. 193.
[CrossRef]

Gibbs, H. M.

Thermal stability for more than 100 msec, with a dielectriccoated diamond as heat sink/mirror, has been reported in a reference in J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarian, A. C. Gossard, W. Wiegmann, “3-pJ, 82-MHz optical logic gates in a room-temperature GaAs–AlGaAs multiple-quantum-well étalon,” Appl. Phys. Lett. 46, 918–920 (1985).
[CrossRef]

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond room-temperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers,” Appl. Phys. Lett. 45, 1031–1033 (1984).
[CrossRef]

J. L. Jewell, H. M. Gibbs, S. S. Tarng, A. C. Gossard, W. Wiegmann, “Regenerative pulsations from an intrinsic bistable optical device,” Appl. Phys. Lett. 40, 291–293 (1982).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

Gossard, A. C.

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs monolithic microresonator array,” Appl. Phys. Lett. 51, 94–96 (1987).
[CrossRef]

Thermal stability for more than 100 msec, with a dielectriccoated diamond as heat sink/mirror, has been reported in a reference in J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarian, A. C. Gossard, W. Wiegmann, “3-pJ, 82-MHz optical logic gates in a room-temperature GaAs–AlGaAs multiple-quantum-well étalon,” Appl. Phys. Lett. 46, 918–920 (1985).
[CrossRef]

J. L. Jewell, H. M. Gibbs, S. S. Tarng, A. C. Gossard, W. Wiegmann, “Regenerative pulsations from an intrinsic bistable optical device,” Appl. Phys. Lett. 40, 291–293 (1982).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

Gourley, P. L.

P. L. Gourley, T. J. Drummond, “Single crystal, epitaxial multilayers of AlAs, GaAs, and Alx Ga1−x As for use as optical interferometric elements,” Appl. Phys. Lett. 49, 489–491 (1986).
[CrossRef]

Halley, J. M.

J. M. Halley, J. E. Midwinter, “Thermal analysis of optical elements and arrays on thick substrates with convection cooling,” J. Appl. Phys. 62, 4055–4064 (1987).
[CrossRef]

Hendry, A.

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in ZnSe interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

Hutchings, D.

Jewell, J. L.

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs monolithic microresonator array,” Appl. Phys. Lett. 51, 94–96 (1987).
[CrossRef]

Thermal stability for more than 100 msec, with a dielectriccoated diamond as heat sink/mirror, has been reported in a reference in J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarian, A. C. Gossard, W. Wiegmann, “3-pJ, 82-MHz optical logic gates in a room-temperature GaAs–AlGaAs multiple-quantum-well étalon,” Appl. Phys. Lett. 46, 918–920 (1985).
[CrossRef]

J. L. Jewell, H. M. Gibbs, S. S. Tarng, A. C. Gossard, W. Wiegmann, “Regenerative pulsations from an intrinsic bistable optical device,” Appl. Phys. Lett. 40, 291–293 (1982).
[CrossRef]

Johnston, A.

D. A. B. Miller, S. D. Smith, A. Johnston, “Optical bistability and signal amplification in a semiconductor crystal: applications of new low-power nonlinear effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[CrossRef]

Kermode, J. P.

D. Weaire, J. P. Kermode, V. M. Dwyer, “The role of diffraction in dispersive optical bistability,” Opt. Commun. 55, 223–228 (1985).
[CrossRef]

Koch, S. W.

L. Bányai, S. W. Koch, “A simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors,” Z. Phys. B 63, 283–291 (1986).
[CrossRef]

Kuszelewicz, R.

R. Kuszelewicz, J. L. Oudar, J. C. Michel, R. Azoulay, “Monolithic GaAs/AlAs optical bistable étalons with improved switching characteristics,” Appl. Phys. Lett. 53, 2138–2140 (1988).
[CrossRef]

Landgren, G.

E. Masseboeuf, O. Sahlén, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-power optical bistability in a thermally stable AlGaAs etalon,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[CrossRef]

O. Sahlén, E. Masseboeuf, M. Rask, N. Nordell, G. Landgren, “Bistable switching in nonlinear Al0.06Ga0.94As étalons,” Appl. Phys. Lett. 53, 1785–1787 (1988).
[CrossRef]

O. Sahlén, U. Olin, E. Masseboeuf, G. Landgren, M. Rask, “Optical bistability and gating in metalorganic vapour phase epitaxy grown GaAs étalons operating in reflection,” Appl. Phys. Lett. 50, 1559–1561 (1987).
[CrossRef]

Lax, M.

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

Lee, Y. H.

Thermal stability for more than 100 msec, with a dielectriccoated diamond as heat sink/mirror, has been reported in a reference in J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarian, A. C. Gossard, W. Wiegmann, “3-pJ, 82-MHz optical logic gates in a room-temperature GaAs–AlGaAs multiple-quantum-well étalon,” Appl. Phys. Lett. 46, 918–920 (1985).
[CrossRef]

Louisell, W. H.

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

Macleod, H. A.

B. G. Bovard, H. A. Macleod, “Nonlinear behaviour of optical coatings subjected to intense laser irradiation,” J. Modern Opt. 35, 1151–1168 (1988).
[CrossRef]

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond room-temperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers,” Appl. Phys. Lett. 45, 1031–1033 (1984).
[CrossRef]

Martellucci, S.

F. Bloisi, L. Vicari, P. Cavaliere, S. Martellucci, J. Quartieri, P. Mormile, G. Pierattini, “Laser induced thermal profiles in thermally and optically thin films,” Appl. Phys. B 47, 67–69 (1988).
[CrossRef]

Masseboeuf, E.

E. Masseboeuf, O. Sahlén, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-power optical bistability in a thermally stable AlGaAs etalon,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[CrossRef]

O. Sahlén, E. Masseboeuf, M. Rask, N. Nordell, G. Landgren, “Bistable switching in nonlinear Al0.06Ga0.94As étalons,” Appl. Phys. Lett. 53, 1785–1787 (1988).
[CrossRef]

O. Sahlén, U. Olin, E. Masseboeuf, G. Landgren, M. Rask, “Optical bistability and gating in metalorganic vapour phase epitaxy grown GaAs étalons operating in reflection,” Appl. Phys. Lett. 50, 1559–1561 (1987).
[CrossRef]

E. Masseboeuf, “Fabrication of thermally stable optically bistable GaAs etalons,” Tech. Rep. 211 (Institute of Optical Research, Stockholm, 1989).

Mathew, J. G. H.

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in ZnSe interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

McCall, S. L.

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs monolithic microresonator array,” Appl. Phys. Lett. 51, 94–96 (1987).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

McKnight, W. B.

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

Michel, J. C.

R. Kuszelewicz, J. L. Oudar, J. C. Michel, R. Azoulay, “Monolithic GaAs/AlAs optical bistable étalons with improved switching characteristics,” Appl. Phys. Lett. 53, 2138–2140 (1988).
[CrossRef]

Midwinter, J. E.

J. M. Halley, J. E. Midwinter, “Thermal analysis of optical elements and arrays on thick substrates with convection cooling,” J. Appl. Phys. 62, 4055–4064 (1987).
[CrossRef]

Miller, A.

A. Miller, G. Parry, “Optical bistability in semiconductors with density-dependent carrier lifetimes,” Opt. Quantum Electron. 16, 339–348 (1984).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, S. D. Smith, A. Johnston, “Optical bistability and signal amplification in a semiconductor crystal: applications of new low-power nonlinear effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[CrossRef]

Moloney, J. V.

J. V. Moloney, “Bistable behavior of a detuned Fabry–Perot étalon with a gaussian input spatial profile under self-focusing and defocusing conditions,” Opt. Acta 29, 1503–1508 (1982).
[CrossRef]

Mormile, P.

F. Bloisi, L. Vicari, P. Cavaliere, S. Martellucci, J. Quartieri, P. Mormile, G. Pierattini, “Laser induced thermal profiles in thermally and optically thin films,” Appl. Phys. B 47, 67–69 (1988).
[CrossRef]

Nordell, N.

E. Masseboeuf, O. Sahlén, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-power optical bistability in a thermally stable AlGaAs etalon,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[CrossRef]

O. Sahlén, E. Masseboeuf, M. Rask, N. Nordell, G. Landgren, “Bistable switching in nonlinear Al0.06Ga0.94As étalons,” Appl. Phys. Lett. 53, 1785–1787 (1988).
[CrossRef]

O’Carroll, C.

D. Weaire, C. O’Carroll, C. Wickham, “Dispersive optical bistability with diffusion: a scaling law,” Europhys. Lett. 8, 25–28 (1989).
[CrossRef]

Ogilvy, I. J.

E. Abraham, I. J. Ogilvy, “Heat flow in interference filters,” Appl. Phys. B 42, 31–34 (1987).
[CrossRef]

Olbright, G. R.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond room-temperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers,” Appl. Phys. Lett. 45, 1031–1033 (1984).
[CrossRef]

Olin, U.

E. Masseboeuf, O. Sahlén, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-power optical bistability in a thermally stable AlGaAs etalon,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[CrossRef]

U. Olin, “Effects of diffraction and diffusion in dispersive optical bistability in Fabry–Perot étalons,” J. Opt. Soc. B 5, 20–23 (1988).
[CrossRef]

U. Olin, O. Sahlén, “Transverse effects in switching of bistable Fabry–Perot étalons filled with a saturable medium,” J. Opt. Soc. Am. B 4, 319–323 (1987).
[CrossRef]

O. Sahlén, U. Olin, E. Masseboeuf, G. Landgren, M. Rask, “Optical bistability and gating in metalorganic vapour phase epitaxy grown GaAs étalons operating in reflection,” Appl. Phys. Lett. 50, 1559–1561 (1987).
[CrossRef]

U. Olin, “Calculation of resonant optical nonlinearities in semiconductors using the theory of Bányai and Koch,” Tech. Rep. 207 (Institute of Optical Research, Stockholm, 1989).

Onton, A.

R. E. Fern, A. Onton, “Refractive index of AlAs,” J. Appl. Phys. 42, 3499–3500 (1971).
[CrossRef]

Oudar, J. L.

R. Kuszelewicz, J. L. Oudar, J. C. Michel, R. Azoulay, “Monolithic GaAs/AlAs optical bistable étalons with improved switching characteristics,” Appl. Phys. Lett. 53, 2138–2140 (1988).
[CrossRef]

Panish, M. B.

H. C. Casey, D. D. Sell, M. B. Panish, “Refractive index of Alx Ga1−x As between 1.2 and 1.8 eV,” Appl. Phys. Lett. 24, 63–65 (1974).
[CrossRef]

Parry, G.

A. Miller, G. Parry, “Optical bistability in semiconductors with density-dependent carrier lifetimes,” Opt. Quantum Electron. 16, 339–348 (1984).
[CrossRef]

Passner, A.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

Penselin, S.

S. Penselin, A. Steudel, “Fabry–Perot Interferometerverspiegelungen aus dielektrischen Vielfachschichten,” Z. Phys. 142, 21–41 (1955).
[CrossRef]

Peyghambarian, N.

Thermal stability for more than 100 msec, with a dielectriccoated diamond as heat sink/mirror, has been reported in a reference in J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarian, A. C. Gossard, W. Wiegmann, “3-pJ, 82-MHz optical logic gates in a room-temperature GaAs–AlGaAs multiple-quantum-well étalon,” Appl. Phys. Lett. 46, 918–920 (1985).
[CrossRef]

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond room-temperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers,” Appl. Phys. Lett. 45, 1031–1033 (1984).
[CrossRef]

Pierattini, G.

F. Bloisi, L. Vicari, P. Cavaliere, S. Martellucci, J. Quartieri, P. Mormile, G. Pierattini, “Laser induced thermal profiles in thermally and optically thin films,” Appl. Phys. B 47, 67–69 (1988).
[CrossRef]

Quartieri, J.

F. Bloisi, L. Vicari, P. Cavaliere, S. Martellucci, J. Quartieri, P. Mormile, G. Pierattini, “Laser induced thermal profiles in thermally and optically thin films,” Appl. Phys. B 47, 67–69 (1988).
[CrossRef]

Rask, M.

E. Masseboeuf, O. Sahlén, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-power optical bistability in a thermally stable AlGaAs etalon,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[CrossRef]

O. Sahlén, E. Masseboeuf, M. Rask, N. Nordell, G. Landgren, “Bistable switching in nonlinear Al0.06Ga0.94As étalons,” Appl. Phys. Lett. 53, 1785–1787 (1988).
[CrossRef]

O. Sahlén, U. Olin, E. Masseboeuf, G. Landgren, M. Rask, “Optical bistability and gating in metalorganic vapour phase epitaxy grown GaAs étalons operating in reflection,” Appl. Phys. Lett. 50, 1559–1561 (1987).
[CrossRef]

Russell, D.

Sahlén, O.

E. Masseboeuf, O. Sahlén, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-power optical bistability in a thermally stable AlGaAs etalon,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[CrossRef]

O. Sahlén, E. Masseboeuf, M. Rask, N. Nordell, G. Landgren, “Bistable switching in nonlinear Al0.06Ga0.94As étalons,” Appl. Phys. Lett. 53, 1785–1787 (1988).
[CrossRef]

O. Sahlén, U. Olin, E. Masseboeuf, G. Landgren, M. Rask, “Optical bistability and gating in metalorganic vapour phase epitaxy grown GaAs étalons operating in reflection,” Appl. Phys. Lett. 50, 1559–1561 (1987).
[CrossRef]

U. Olin, O. Sahlén, “Transverse effects in switching of bistable Fabry–Perot étalons filled with a saturable medium,” J. Opt. Soc. Am. B 4, 319–323 (1987).
[CrossRef]

O. Sahlén, “Switching power dependence on spot size in bistable ZnS etalons,” Opt. Commun. 59, 238–242 (1986).
[CrossRef]

Scherer, A.

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs monolithic microresonator array,” Appl. Phys. Lett. 51, 94–96 (1987).
[CrossRef]

Sell, D. D.

H. C. Casey, D. D. Sell, M. B. Panish, “Refractive index of Alx Ga1−x As between 1.2 and 1.8 eV,” Appl. Phys. Lett. 24, 63–65 (1974).
[CrossRef]

Siegman, A. E.

Smith, S. D.

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in ZnSe interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

D. A. B. Miller, S. D. Smith, A. Johnston, “Optical bistability and signal amplification in a semiconductor crystal: applications of new low-power nonlinear effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[CrossRef]

Steudel, A.

S. Penselin, A. Steudel, “Fabry–Perot Interferometerverspiegelungen aus dielektrischen Vielfachschichten,” Z. Phys. 142, 21–41 (1955).
[CrossRef]

Taghizadeh, M. R.

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in ZnSe interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

Tarng, S. S.

J. L. Jewell, H. M. Gibbs, S. S. Tarng, A. C. Gossard, W. Wiegmann, “Regenerative pulsations from an intrinsic bistable optical device,” Appl. Phys. Lett. 40, 291–293 (1982).
[CrossRef]

Thurmond, C. D.

C. D. Thurmond, “The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc. 122, 1133–1141 (1975).
[CrossRef]

Van Milligen, F.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond room-temperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers,” Appl. Phys. Lett. 45, 1031–1033 (1984).
[CrossRef]

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

Vicari, L.

F. Bloisi, L. Vicari, P. Cavaliere, S. Martellucci, J. Quartieri, P. Mormile, G. Pierattini, “Laser induced thermal profiles in thermally and optically thin films,” Appl. Phys. B 47, 67–69 (1988).
[CrossRef]

Walker, A. C.

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in ZnSe interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

Warren, M.

Thermal stability for more than 100 msec, with a dielectriccoated diamond as heat sink/mirror, has been reported in a reference in J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarian, A. C. Gossard, W. Wiegmann, “3-pJ, 82-MHz optical logic gates in a room-temperature GaAs–AlGaAs multiple-quantum-well étalon,” Appl. Phys. Lett. 46, 918–920 (1985).
[CrossRef]

Weaire, D.

D. Weaire, C. O’Carroll, C. Wickham, “Dispersive optical bistability with diffusion: a scaling law,” Europhys. Lett. 8, 25–28 (1989).
[CrossRef]

D. Weaire, J. P. Kermode, V. M. Dwyer, “The role of diffraction in dispersive optical bistability,” Opt. Commun. 55, 223–228 (1985).
[CrossRef]

Wherrett, B. S.

B. S. Wherrett, D. Hutchings, D. Russell, “Optically bistable interference filters: optimization considerations,” J. Opt. Soc. Am. B 3, 351–362 (1986);A. Redondo, J. G. Beery, “Thermal conductivity in optical coatings,” J. Appl. Phys. 60, 3882–3885 (1986).
[CrossRef]

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in ZnSe interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

Wickham, C.

D. Weaire, C. O’Carroll, C. Wickham, “Dispersive optical bistability with diffusion: a scaling law,” Europhys. Lett. 8, 25–28 (1989).
[CrossRef]

Wiegmann, W.

Thermal stability for more than 100 msec, with a dielectriccoated diamond as heat sink/mirror, has been reported in a reference in J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarian, A. C. Gossard, W. Wiegmann, “3-pJ, 82-MHz optical logic gates in a room-temperature GaAs–AlGaAs multiple-quantum-well étalon,” Appl. Phys. Lett. 46, 918–920 (1985).
[CrossRef]

J. L. Jewell, H. M. Gibbs, S. S. Tarng, A. C. Gossard, W. Wiegmann, “Regenerative pulsations from an intrinsic bistable optical device,” Appl. Phys. Lett. 40, 291–293 (1982).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).

Wright, E. M.

W. J. Firth, I. Galbraith, E. M. Wright, “Diffusion and diffraction in dispersive optical bistability,” J. Opt. Soc. Am. B 2, 1005–1009 (1985).
[CrossRef]

W. J. Firth, I. Galbraith, E. M. Wright, “Diffusion effects in bistable optical arrays,” in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds. (Springer-Verlag, Berlin, 1986), p. 193.
[CrossRef]

Yao, T.

T. Yao, “Thermal properties of AlAs/GaAs superlattices,” Appl. Phys. Lett. 51, 1798–1800 (1987).
[CrossRef]

Appl. Phys. B (2)

E. Abraham, I. J. Ogilvy, “Heat flow in interference filters,” Appl. Phys. B 42, 31–34 (1987).
[CrossRef]

F. Bloisi, L. Vicari, P. Cavaliere, S. Martellucci, J. Quartieri, P. Mormile, G. Pierattini, “Laser induced thermal profiles in thermally and optically thin films,” Appl. Phys. B 47, 67–69 (1988).
[CrossRef]

Appl. Phys. Lett. (13)

T. Yao, “Thermal properties of AlAs/GaAs superlattices,” Appl. Phys. Lett. 51, 1798–1800 (1987).
[CrossRef]

H. C. Casey, D. D. Sell, M. B. Panish, “Refractive index of Alx Ga1−x As between 1.2 and 1.8 eV,” Appl. Phys. Lett. 24, 63–65 (1974).
[CrossRef]

Thermal stability for more than 100 msec, with a dielectriccoated diamond as heat sink/mirror, has been reported in a reference in J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarian, A. C. Gossard, W. Wiegmann, “3-pJ, 82-MHz optical logic gates in a room-temperature GaAs–AlGaAs multiple-quantum-well étalon,” Appl. Phys. Lett. 46, 918–920 (1985).
[CrossRef]

E. Masseboeuf, O. Sahlén, U. Olin, N. Nordell, M. Rask, G. Landgren, “Low-power optical bistability in a thermally stable AlGaAs etalon,” Appl. Phys. Lett. 54, 2290–2292 (1989).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical bistability in semiconductors,” Appl. Phys. Lett. 35, 451–453 (1979).
[CrossRef]

D. A. B. Miller, S. D. Smith, A. Johnston, “Optical bistability and signal amplification in a semiconductor crystal: applications of new low-power nonlinear effects in InSb,” Appl. Phys. Lett. 35, 658–660 (1979).
[CrossRef]

J. L. Jewell, H. M. Gibbs, S. S. Tarng, A. C. Gossard, W. Wiegmann, “Regenerative pulsations from an intrinsic bistable optical device,” Appl. Phys. Lett. 40, 291–293 (1982).
[CrossRef]

O. Sahlén, E. Masseboeuf, M. Rask, N. Nordell, G. Landgren, “Bistable switching in nonlinear Al0.06Ga0.94As étalons,” Appl. Phys. Lett. 53, 1785–1787 (1988).
[CrossRef]

R. Kuszelewicz, J. L. Oudar, J. C. Michel, R. Azoulay, “Monolithic GaAs/AlAs optical bistable étalons with improved switching characteristics,” Appl. Phys. Lett. 53, 2138–2140 (1988).
[CrossRef]

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. Van Milligen, “Microsecond room-temperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers,” Appl. Phys. Lett. 45, 1031–1033 (1984).
[CrossRef]

P. L. Gourley, T. J. Drummond, “Single crystal, epitaxial multilayers of AlAs, GaAs, and Alx Ga1−x As for use as optical interferometric elements,” Appl. Phys. Lett. 49, 489–491 (1986).
[CrossRef]

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAs-AlAs monolithic microresonator array,” Appl. Phys. Lett. 51, 94–96 (1987).
[CrossRef]

O. Sahlén, U. Olin, E. Masseboeuf, G. Landgren, M. Rask, “Optical bistability and gating in metalorganic vapour phase epitaxy grown GaAs étalons operating in reflection,” Appl. Phys. Lett. 50, 1559–1561 (1987).
[CrossRef]

Europhys. Lett. (1)

D. Weaire, C. O’Carroll, C. Wickham, “Dispersive optical bistability with diffusion: a scaling law,” Europhys. Lett. 8, 25–28 (1989).
[CrossRef]

J. Appl. Phys. (4)

J. M. Halley, J. E. Midwinter, “Thermal analysis of optical elements and arrays on thick substrates with convection cooling,” J. Appl. Phys. 62, 4055–4064 (1987).
[CrossRef]

P. Asbeck, “Self-absorption effects on the radiative lifetime in GaAs–GaAlAs double heterostructures,” J. Appl. Phys. 48, 820–822 (1977).
[CrossRef]

R. E. Fern, A. Onton, “Refractive index of AlAs,” J. Appl. Phys. 42, 3499–3500 (1971).
[CrossRef]

M. A. Afromowitz, “Thermal conductivity of Ga1−x Alx As alloys,” J. Appl. Phys. 44, 1292–1294 (1973).
[CrossRef]

J. Electrochem. Soc. (1)

C. D. Thurmond, “The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc. 122, 1133–1141 (1975).
[CrossRef]

J. Modern Opt. (1)

B. G. Bovard, H. A. Macleod, “Nonlinear behaviour of optical coatings subjected to intense laser irradiation,” J. Modern Opt. 35, 1151–1168 (1988).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Opt. Soc. B (1)

U. Olin, “Effects of diffraction and diffusion in dispersive optical bistability in Fabry–Perot étalons,” J. Opt. Soc. B 5, 20–23 (1988).
[CrossRef]

Opt. Acta (1)

J. V. Moloney, “Bistable behavior of a detuned Fabry–Perot étalon with a gaussian input spatial profile under self-focusing and defocusing conditions,” Opt. Acta 29, 1503–1508 (1982).
[CrossRef]

Opt. Commun. (3)

D. Weaire, J. P. Kermode, V. M. Dwyer, “The role of diffraction in dispersive optical bistability,” Opt. Commun. 55, 223–228 (1985).
[CrossRef]

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in ZnSe interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

O. Sahlén, “Switching power dependence on spot size in bistable ZnS etalons,” Opt. Commun. 59, 238–242 (1986).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

A. Miller, G. Parry, “Optical bistability in semiconductors with density-dependent carrier lifetimes,” Opt. Quantum Electron. 16, 339–348 (1984).
[CrossRef]

Phys. Rev. A (1)

M. Lax, W. H. Louisell, W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
[CrossRef]

Z. Phys. (1)

S. Penselin, A. Steudel, “Fabry–Perot Interferometerverspiegelungen aus dielektrischen Vielfachschichten,” Z. Phys. 142, 21–41 (1955).
[CrossRef]

Z. Phys. B (1)

L. Bányai, S. W. Koch, “A simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors,” Z. Phys. B 63, 283–291 (1986).
[CrossRef]

Other (6)

W. J. Firth, I. Galbraith, E. M. Wright, “Diffusion effects in bistable optical arrays,” in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, S. D. Smith, eds. (Springer-Verlag, Berlin, 1986), p. 193.
[CrossRef]

U. Olin, “Calculation of resonant optical nonlinearities in semiconductors using the theory of Bányai and Koch,” Tech. Rep. 207 (Institute of Optical Research, Stockholm, 1989).

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).

E. Masseboeuf, “Fabrication of thermally stable optically bistable GaAs etalons,” Tech. Rep. 211 (Institute of Optical Research, Stockholm, 1989).

For the thermal conductivity of the cement, 0.008 W/cmK was used. Generally, commercial cements have lower thermal conductivities;see for instance, Loctite Tech. Data Sheet, “UV Curing Products” (Loctite, Hertfordshire, UK, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structure of N layers surrounded by air. The input light beam is propagating from left to right and is focused on the surface at z = 0. Only the layer denoted s has nonlinear properties and is generating heat.

Fig. 2
Fig. 2

Schematic of the structure of the device considered in the simulations (not to scale). The following parameters were used: λ = 883 nm, κ(GaAs) = 0.45 W/cm K, κ(Al0.1Ga0.9As) = 0.2 W/cm K, κ(Al0.3Ga0.7As) = 0.13 W/cm K, κ(AlAs) = 0.9 W/cm K, κ(superlattice) = 0.15 W/cm K, κ(evaporated mirror) = 0.008 W/cm K, n(GaAs) = 3.6, n(Al0.1Ga0.9As) = 3.54, n(Al0.3Ga0.7As) = 3.38, n(AlAs) = 2.98, n(superlattice) = 3.3, D = 10 cm2/sec, and τ = 10 nsec. For the low-index material of the evaporated mirror the refractive index was 1.38, and for the high index it was 2.3.

Fig. 3
Fig. 3

Switch-on and switch-off power versus spot size (1/e radius of the input electric field) for the approximate model (solid curves) and the full model (dashed curves).

Fig. 4
Fig. 4

Temperature rise in the component just after the switch to the low-reflecting branch (see the inset) versus spot radius for the approximate model (solid curve) and the full model (dashed curve).

Fig. 5
Fig. 5

Contrast, defined as the ratio between the maximum reflected power before switch-on and the minimum reflected power after switch-on (see inset), versus spot radius of the input beam. The solid curve shows the results for the approximate model, and the dashed curve shows those of the full model.

Fig. 6
Fig. 6

Reflected power versus input power for a spot radius of 1.2 μm. The curves are calculated for increasing detunings (0.1, 1.0, 1.75, 2.5 nm) relative to the curve with the smallest input power for the differential gain region.

Fig. 7
Fig. 7

Reflectance spectra for spot radii of 1.4 (solid curve), 2.8 (dotted curve), and 5.6 μm (dashed curve).

Fig. 8
Fig. 8

Temperature rise after switch-on for the device inset in the figure versus the thickness of the cement. The spot radius is 2.8 μm. The solid curve shows the result for an evaporated mirror with a thermal conductivity of 0.008 W/cm K, and the dashed curve shows the result for 0.08 W/cm K.

Fig. 9
Fig. 9

Temperature rise after switch-on for the device inset in the figure versus the thickness of the indium soldering layer. As for Fig. 8, the spot radius is 2.8 μm. κ(In) = 0.2 W/cm K, κ(Ag) = 4.3 W/cm K, and κ(Cu) = 3.9 W/cm K. The same detuning from the Fabry–Perot peak as in Fig. 8 was used.

Equations (46)

Equations on this page are rendered with MathJax. Learn more.

( 2 r 2 + 1 r r + 2 z 2 ) E s + k s 2 E s = [ i k s α s ( N , T ) ( ω / c ) 2 2 n s Δ n ( N , T ) ] E s ,
( 2 r 2 + 1 r r + 2 z 2 ) E i + k i 2 E i = i k i α i E i , i = 1 , N , i s .
D ( 2 r 2 + 1 r r + 2 z 2 ) N N τ = α s ( N , T ) ( I F s + I B s ) ω ,
κ s ( 2 r 2 + 1 r r + 2 z 2 ) T s = q ω N τ ,
T i ( r , z i ) = T i + 1 ( r , z i ) ( i = 1 , N 1 ) ,
κ i T i z | z = z i = κ i + 1 T i + 1 z | z = z i ( i = 1 , N 1 ) ,
T 1 z | z = 0 = 0 ,
T N z | z = z N = 0 .
T ¯ = 1 / L z s L z s T ( r , z ) d z ,
N ̂ ( ξ ) = 1 1 + l τ 2 ξ 2 β [ α s ( ρ ) ξ s 1 ξ s ( | F s ( ρ , ζ ) | 2 + | B s ( ρ , ζ ) | 2 ) d ζ ] ,
T ( ρ , ζ ) s = 0 [ G 1 s ( ξ ) exp ( L ξ ζ / w 0 ) + G 2 s ( ξ ) × exp ( L ξ ζ / w 0 ) + N ̂ / ξ 2 ] J 0 ( ρ ξ ) ξ d ξ ,
T ( ρ , ζ ) i = 0 [ G 1 i ( ξ ) exp ( L ξ ζ / w 0 ) + G 2 i ( ξ ) exp ( L ξ ζ / w 0 ) ] × J 0 ( ρ ξ ) ξ d ξ , i = 1 , N , i s ,
T ¯ ( ρ ) = 0 ( 2 w 0 L ξ sinh ( L ξ / 2 w 0 ) { G 1 s ( ξ ) exp [ L ξ ( ζ s 1 + 0.5 ) / w 0 ] + G 2 s ( ξ ) exp [ L ξ ( ζ s 1 + 0.5 ) / w 0 ] } + N ̂ ( ξ ) / ξ 2 ) J 0 ( ξ ρ ) ξ d ξ .
E i ( ρ , ζ ) = 0 { F 1 i ( ξ ) exp [ i q i ( ξ ) ζ ] + F 2 i ( ξ ) × exp [ i q i ( ξ ) ζ ] } J 0 ( ξ ρ ) ξ d ξ , i = 1 , N ,
q s ( ξ ) = k s L [ 1 ( ξ / k s w 0 ) 2 + δ ϕ s 0 / k s L i α s 0 / k s L ] 1 / 2 ,
q i ( ξ ) = k i L [ 1 ( ξ / k i w 0 ) 2 i α i / k i L ] 1 / 2 , i = 1 , N , i s ,
q s ( ξ ) = k s L ξ 2 / 4 F s + 1 / 2 ( δ ϕ s 0 i α s 0 ) ,
q i ( ξ ) = k i L ξ 2 / 4 F i i α i / 2 ,
F s F / 2 ,
G ( i + 1 ) = M ( i ) G ( i ) ,
G ( i ) = [ G 1 i G 2 i ]
M ( i ) = 1 / 2 × [ 1 + κ i / κ i + 1 ( 1 κ i / κ i + 1 ) exp ( 2 L ξ ζ i / w 0 ) ( 1 κ i / κ i + 1 ) exp ( 2 L ξ ζ i / w 0 ) 1 + κ i / κ i + 1 ] , 1 i < N .
V ( 1 ) = [ V 1 ( 1 ) V 2 ( 1 ) ] = 1 / 2 N ̂ / ξ 2 [ exp ( L ξ ζ s 1 / w 0 ) exp ( L ξ ζ s 1 / w 0 ) ] ,
V ( 2 ) = [ V 1 ( 2 ) V 2 ( 2 ) ] = 1 / 2 N ̂ / ξ 2 [ exp ( L ξ ζ s / w 0 ) exp ( L ξ ζ s / w 0 ) ] .
G ( s ) = M ( s 1 ) G ( s 1 ) + V ( 1 ) = i = s 1 1 M ( i ) G ( 1 ) + V ( 1 ) = W G ( 1 ) + V ( 1 ) ,
G ( s + 1 ) = M ( s ) W G ( 1 ) + M ( s ) V ( 1 ) + V ( 2 ) ,
G ( N ) = i = N 1 1 M ( i ) G ( 1 ) + i = N 1 s M ( i ) V ( 1 ) + i = N 1 s + 1 M ( i ) V ( 2 ) = P G ( 1 ) + Q V ( 1 ) + R V ( 2 ) .
G 11 = G 21 ,
G 1 N = exp ( 2 L ξ ζ N / w 0 ) G 2 N = a N G 2 N ,
G 21 = ( Q 11 a N Q 21 ) V 1 ( 1 ) + ( Q 12 a N Q 22 ) V 2 ( 1 ) + ( R 11 a N R 21 ) V 1 ( 2 ) + ( R 12 a N R 22 ) V 2 ( 2 ) P 11 + P 12 P 21 a N P 22 a N .
F ( i + 1 ) = A ( i ) F ( i ) ,
F ( i ) = [ F 1 i F 2 i ]
A ( i ) = 1 / 2 × [ [ 1 + q i ( ξ ) / q i + 1 ( ξ ) ] exp { i [ q i ( ξ ) q i + 1 ( ξ ) ] ζ i } [ 1 q i ( ξ ) / q i + 1 ( ξ ) ] exp { i [ q i ( ξ ) + q i + 1 ( ξ ) ] ζ i } [ 1 q i ( ξ ) / q i + 1 ( ξ ) ] exp { i [ q i ( ξ ) + q i + 1 ( ξ ) ] ζ i } [ 1 + q i ( ξ ) / q i + 1 ( ξ ) ] exp { i [ q i ( ξ ) q i + 1 ( ξ ) ] ζ i } ] , 0 i N ,
F ( s ) = i = s 1 0 A ( i ) F ( 0 ) = S F ( 0 )
F ( N + 1 ) = i = N s A ( i ) F ( s ) = T F ( s ) .
F 10 ( ξ ) = [ F 1 s ( ξ ) S 12 F 20 ( ξ ) ] / S 11 ,
F 1 s ( ξ ) = T 12 / T 11 F 2 s ( ξ ) ,
F 2 , N + 1 ( ξ ) = ( T 22 T 11 T 12 T 21 ) / T 11 F 2 s ( ξ ) ,
F 2 s ( ξ ) = ( S 11 S 22 S 12 S 21 ) / ( S 11 T 11 + T 12 S 21 ) T 11 F 20 ( ξ ) .
r 1 ( ξ ) = S 21 / S 11 exp [ i 2 q s ( ξ ) ζ s 1 ] ,
r 2 ( ξ ) = T 12 / T 11 exp [ i 2 q s ( ξ ) ζ s ] ,
t 1 ( ξ ) = ( S 11 S 22 S 12 S 21 ) / S 11 exp [ q s ( ξ ) ζ s 1 ] .
F 2 s ( ξ ) = S 21 / S 11 F 1 s ( ξ ) + ( S 11 S 22 S 12 S 21 ) / S 11 F 20 ( ξ ) .
F s ( ρ , ζ ) = 0 F 2 s ( ξ ) exp [ i q s ( ξ ) ζ ] J 0 ( ξ ρ ) ξ d ξ = 0 t 1 ( ξ ) F 20 ( ξ ) exp [ i q s ( ξ ) ( ζ ζ s 1 ) ] 1 r 1 ( ξ ) r 2 ( ξ ) exp [ 2 i q s ( ξ ) ] J 0 ( ξ ρ ) ξ d ξ .
P F = 2 π w 0 2 I 0 0 | F s ( ρ , ζ s ) | 2 ρ d ρ = 2 π w 0 2 I 0 0 | t 1 ( ξ ) | 2 exp ( α s 0 ) [ 1 R α ( ξ ) ] 2 | F 20 ( ξ ) | 2 1 + F ( ξ ) sin 2 [ Ψ ( ξ ) ] ξ d ξ = 2 π w 0 2 I 0 0 H ( ξ ) | F 20 ( ξ ) | 2 ξ d ξ ,
F s F / 2 ,

Metrics